You can clone this macro to create your similar macro changing a little the
Tcl code to calculate the position you want instead of the mid-edge
Enrique
De: gidlist-bounces at listas.cimne.upc.edu
[mailto:gidlist-bounces at listas.cimne.upc.edu] En nombre de Dhankhar, Amit
Kumar
Enviado el: lunes, 6 de octubre de 2014 22:45
Para: gidlist at listas.cimne.upc.edu
Asunto: [GiDlist] GID move node feature?
Hi,
Could you tell me if GID provides a feature so that I can move some specific
nodes at specific distance for meshing purposes.
Basically I am interested to model tet10 (quadratic tetrahedrals) mesh
elements but nodes should be at (1/4)th distance rather than the default
middle location in the region where my crack exists in the material. I know
there is one "move node" feature but not really sure if that would suit my
purpose. Is there any easy way to do this in GID?
Would appreciate any help.
Thanks
------=_NextPart_001_0980_01CFE23D.E455BBA0
Content-Type: text/html;
charset="us-ascii"
Content-Transfer-Encoding: quoted-printable
html xmlns:v=3D"urn:schemas-microsoft-com:vml" =
xmlns:o=3D"urn:schemas-microsoft-comoffice" =
xmlns:w=3D"urn:schemas-microsoft-comword" =
xmlns:m=3D"http://schemas.microsoft.com/office/2004/12/omml" =
xmlns=3D"http://www.w3.org/TR/REC-html40"headmeta =
http-equiv=3DContent-Type content=3D"text/html; =
charset=3Dus-ascii"meta name=3DGenerator content=3D"Microsoft Word 14 =
(filtered medium)"!--[if !mso]stylev\:* =
{behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
/style![endif]--style!--
/* Font Definitions */
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
{font-family:Tahoma;
panose-1:2 11 6 4 3 5 4 4 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman","serif";}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:purple;
text-decoration:underline;}
p
{mso-style-priority:99;
margin:0cm;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman","serif";}
p.MsoAcetate, li.MsoAcetate, div.MsoAcetate
{mso-style-priority:99;
mso-style-link:"Texto de globo Car";
margin:0cm;
margin-bottom:.0001pt;
font-size:8.0pt;
font-family:"Tahoma","sans-serif";}
span.EstiloCorreo18
{mso-style-type:personal-reply;
font-family:"Calibri","sans-serif";
color:#1F497D;}
span.TextodegloboCar
{mso-style-name:"Texto de globo Car";
mso-style-priority:99;
mso-style-link:"Texto de globo";
font-family:"Tahoma","sans-serif";}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:70.85pt 3.0cm 70.85pt 3.0cm;}
div.WordSection1
{page:WordSection1;}
--/style!--[if gte mso 9]xml
o:shapedefaults v:ext=3D"edit" spidmax=3D"1026"
/xml![endif]--!--[if gte mso 9]xml
o:shapelayout v:ext=3D"edit"
o:idmap v:ext=3D"edit" data=3D"1"
/o:shapelayout/xml![endif]--/headbody lang=3DEN-US link=3Dblue =
vlink=3Dpurplediv class=3DWordSection1p class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'You can move a mesh node for example as you said, from the menu =
o:p/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'Mesh->Edit mesh->Move nodeo:p/o:p/span/pp =
class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'And then pick the node and enter its new x,y,z coordinates in the =
lower command lineo:p/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'That internally is converted into this GiD process =
commandsp/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'=
MEscape Meshing EditMesh MoveNode $node_id $x,$y,$z =
Escapeo:p/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'Where node_id is the node number, and x y z the new =
locationo:p/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'And it exists also a more direct GiD-Tcl =
commandp/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'=
GiD_Mesh edit node $node_id {$x $y $z}o:p/o:p/span/pp =
class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'You can create a Tcl procedure to set the quadratic node position you =
want for all mesh nodes, and you can invoke this procedure in multiple =
ways o:p/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'e.g. writing in the lower command line preceded by -np- =
your_procedure (-np- mean ‘no process’ and then =
the next is expected to be a Tcl command)o:p/o:p/span/pp =
class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'of from a button of the ‘macros =
toolbar’o:p/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'In fact It already exists (hidden in the toolbar) a macro button very =
similar, to re-locate the quadratic nodes aligned in the middle edge =
(e.g. to avoid possible wrong jacobians in curved =
elements)o:p/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'Have a look to the Tcl code of this macro: click the “Edit =
macros” button to open the Macros windowo:p/o:p/span/pp =
class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'img width=3D104 height=3D77 id=3D"Imagen_x0020_1" =
src=3D"cid:image001.png at 01CFE23D.E2D3D690"/spanspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'And select the ‘Align Quadratic Nodes’ macro to see its =
Tcl code on the righto:p/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalimg width=3D764 =
height=3D462 id=3D"Imagen_x0020_2" =
src=3D"cid:image002.jpg at 01CFE23D.E2D3D690"span =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'From the window could set this macro visible in the toolbar or invoke =
it.o:p/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'You can clone this macro to create your similar macro changing a =
little the Tcl code to calculate the position you want instead of the =
mid-edgeo:p/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'Enriqueo:p/o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pp class=3DMsoNormalspan =
style=3D'font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497=
D'o:p /o:p/span/pdivdiv =
style=3D'border:none;border-top:solid #B5C4DF 1.0pt;padding:3.0pt 0cm =
0cm 0cm'p class=3DMsoNormalspan lang=3DES =
style=3D'font-size:10.0pt;font-family:"Tahoma","sans-serif"'De:/span/=
bspan lang=3DES =
style=3D'font-size:10.0pt;font-family:"Tahoma","sans-serif"' =
gidlist-bounces at listas.cimne.upc.edu =
[mailto:gidlist-bounces at listas.cimne.upc.edu] En nombre de =
Dhankhar, Amit KumarbrEnviado el: lunes, 6 de octubre de =
2014 22:45brPara: =
gidlist at listas.cimne.upc.edubrAsunto: [GiDlist] GID move node =
feature?o:p/o:p/span/pp =
class=3DMsoNormalo:p /o:p/pdivp class=3DMsoNormalspan =
style=3D'font-size:10.0pt;font-family:"Tahoma","sans-serif";color:black'=
Hi,brbrCould you tell me if GID provides a feature so that I can =
move some specific nodes at specific distance for meshing purposes. =
brBasically I am interested to model tet10 (quadratic tetrahedrals) =
mesh elements but nodes should be at (1/4)th distance rather than the =
default middle location in the region where my crack exists in the =
material. I know there is one "move node" feature but not =
really sure if that would suit my purpose. Is there any easy way to do =
this in GID?brWould appreciate any =
help.brbrThankso:p/o:p/span/p/body/html
------=_NextPart_001_0980_01CFE23D.E455BBA0--
------=_NextPart_000_097F_01CFE23D.E451EB10
Content-Type: image/png;
name="image001.png"
Content-Transfer-Encoding: base64
Content-ID: image001.png at 01CFE23D.E2D3D690
iVBORw0KGgoAAAANSUhEUgAAAGgAAABNCAIAAADFH7ZzAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO
wwAADsQBiC4+owAAB49JREFUeF7tnG9oG2Ucx5+sWXfYVQ/XwcG67egmDd1kdYxS3AZ9sXaBKbay
ssImBOYgRZwBnayI0OEkwTpWx6AFFeILoVKxylTi6ouAfXGEUU+pNaNde64t5EVfnJrBs+3a+Hue
y13+XNIsRztc7vmRhds9f/Lc576/3+95nkvjSqVSCKFVaivU9AM4qb/nWV41s755cODAAWuryjuz
qfIu6fFcEQNnkzMDx8DZJGCzmatYcvhox468Lt++e1dPI9k5hCWHHEpWalB8Zdcum3enEpuVF+Ou
7N5diRDsXFMBcEFBKNpTKnW1ocHO51Rcm/IUt4rxUy80fxP5seI4lH1B5YGDxYRry5bUysrYje/K
/qjKalAmOIRSDx4QAnSh5mQrG5yTYWVfewFwfYlEPh2XK6Vpq/fuPf3yS7XHO1IPHzLFFVecywWT
3dT9+/BaTSZd1dU1R4/WHH5x886dcJ7prjC4d5eWSB6ornZv3+6uq6vi+S17Gp597bR7e93qP/8y
akCg6JILymA59eXnn6IU+OWqy+3eVFNjpoWuV7qKrb3YfhyhdPrsuaq6bSC0qmeeIXGNJtOTr55k
oiudVWmYe0ASArVT3acYtdKuamXEdkd0JqUVx/RVkAADZ1MYDBwDZ5OAzWZMcTbBwQT4C2gKDxLo
s4SHKysaPdDoBDg9BTH7pilVM+vQA/2M/hgbWp1nE2Cbt8IhzYjiPgwukKvVENZw+h0hnMTInXuS
qBBhjOH96ifPffXWjcCZ5vnntzlTcWlw3mNeYIIQZ9ELwZRtGKuhj4fb3ApQQ0c65//+xcHgPljw
er3Nh5rzGMWn4p79nryTUjQiXb/Y4/UInT3o69B8+2FngjOzar6yCocqDUnhfkKtzQ/UUFJ2SESz
XiYBR8OW1UkRiXHZpqHB11t7joiE2s8X0bIMAdGxRmLc++/NdHZ2chynZwNi+oEOzqAjXfd5D4nC
oU4kDRJqUOpG811vONdVSTJFCMIZMXg3DshJ40xixJ+hplJqCMUVxwpu7d0RU2uXvaLAG1qLE+9G
SJ5F8qLDwRFAhZIDlRX+ftjT3Cwe6SEeSrRGaoLW5ATyRwtFRmfANLMqB5OPtBkHZDIcGeY8Hq7V
r96S0HKW1hQUmOB++/WcMygVuEqaVbNjnB7UqEERJ/BY8KBZGSVVDMLUOKK1RRSQuKnfex1LDS6c
Kq7grELDohJFgodbjuOpqKoo6rIozXIyaE3i/vzjTSdTM8DRUJYDAlBizNXz2M3jqbiSUOUkHkmg
6DIH1MjExfFmuqoR4yDAkZeEJ0ZQnYikSFyWpDjoDcsaF5pQ/WdgVcss46rYCG2iZ68g7vVw9SJe
TOjUpCQOx3F8EYcu+gWeZ9jSrkqTA/U+WHvB+gvj/nd8kUhEjkZGbimSigCZ39cDL0HgPTzzU4Iq
a+uc4CPk4tEwFPR/9m3/SFRxC23H2gAZTIA9oiDUi6iO17fkHG5mVsUyGJnBKSMRKTIRR1uFUL8P
3BYwQTIAVWKc4JIKywy6YjK7Ix6PCJoCZSlKInzZB0kgIida94uwT9faTF5QThSHVbI57HijitN3
QQwaoVBIRQKYWC+IYDziYJmlqcSRNbqDwsycAIMbylPgqnI8LiuLCkkQGha2comEArM4shRTlPgs
/JOcvAeXLRiyH7e56my5Gpr/64LxnNChjwfZc9VyNZOuz57kM3A2CdhsVuI7wNZe2RcLM/M4m8yd
3YzFOJv3f91cVd8xrmDT/5TctPUEp6qwuqhM43k+DxxzVZt3moGzCS7tqi74kze7NjMzA9/IhBjn
RFcFB7ZtucDHAxAPDAuM590NKO0YmkNobqhDP3hibd2TA6AZaJy82Vv4Jw+spWvX/79wZclh3e7E
Y0kOxDGJdQzNGgPXfRbeu8Mo1neQ53O8mpaOp1tBidFBxr0zESHT0Kyld0Y6CQTgk+n/MoXmR+XV
L4/pRoCjIIjp1zQeONjXNAqZQx1GY+Gc4bUPqqM+1BKcVNXB9tyBx/oG0DC0GfWFu3k/PYTjWN81
PWxCS2pQPEBjJVA4ONYFHREzOotNN0JD+F9mDOpkcLqbhtfxa+lhWT/8ERhuBDgKwhz/3Ox0S/A8
xdLQe8H3CGOiVVqCwzROtp8Asl3Hacgkx9OzekpJSw4ES23up7GY70J+ZDUawhiQ74R+a8ggYrfv
ILSnsSWsI7RjGwHOzjjKawPy6kZUxJPBlvKaZmo39N4kTuA3XaOsjjYeXMPeJsPB5oYG0gIpa4zW
yndux1oa96SFpuvoeFdL2mkL9A1jQOEfdCcngzDUR/R3E9hTGRtTpQIHBbrcCHBmjNNjefsgjVNg
ftTlyx8DuJ81OZTi2n4+iGgg9d9uSisOCIw25QbXrF7aB0loo4GXREIaA438AhHY4uOlBlDyxwys
HRTbyHToyqE0YVpjje3fR+yhYqpthKtWDJy1LoSBs3mbC69Va2tri/WXSCSsv4sJZ/bt22dzCE9I
s9I7wDU1Nf1g9HrgPeeAnl5aWioW7KDUIX/om6848i2uNX4bzuWKRqNtbW0LCwsFf5vVOeAsMU6X
2qVL+S/9JDODwH+6xJkYg4fm5gAAAABJRU5ErkJggg==
------=_NextPart_000_097F_01CFE23D.E451EB10
Content-Type: image/jpeg;
name="image002.jpg"
Content-Transfer-Encoding: base64
Content-ID: image002.jpg at 01CFE23D.E2D3D690
/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwkHBgoJCAkLCwoMDxkQDw4ODx4WFxIZJCAmJSMg
IyIoLTkwKCo2KyIjMkQyNjs9QEBAJjBGS0U+Sjk/QD3/2wBDAQsLCw8NDx0QEB09KSMpPT09PT09
PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT3/wAARCAHOAvwDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwB0caeW
nyL90dqd5af3F/IUR/6tP90U6vVPIG+Wn9xfyFHlp/cX8hTqKAG+Wn9xfyFHlp/cX8hTqKAG+Wn9
xfyFHlp/cX8hTqKAG+Wn9xfyFHlp/cX8hTqKAG+Wn9xfyFHlp/cX8hTqKAG+Wn9xfyFHlp/cX8hT
qKAG+Wn9xfyFHlp/cX8hTqKAG+Wn9xfyFHlp/cX8hTqKAG+Wn9xfyFHlp/cX8hTqKAG+Wn9xfyFH
lp/cX8hTqKAG+Wn9xfyFHlp/cX8hTqKAG+Wn9xfyFHlp/cX8hTqKAG+Wn9xfyFHlp/cX8hTqKAG+
Wn9xfyFHlp/cX8hTqKAG+Wn9xfyFHlp/cX8hTqKAG+Wn9xfyFHlp/cX8hTqKAG+Wn9xfyFHlp/cX
8hTqKAG+Wn9xfyFHlp/cX8hTqKAG+Wn9xfyFHlp/cX8hTqKAG+Wn9xfyFHlp/cX8hTqKAG+Wn9xf
yFMlMMMTSSBFRBljt6CpaiuYzNbSRrjLDHPSk9tAW4m+3Ekcfyb5FLKMdQO/60/ZHx8qc+wqh/Z0
qsWV0YqGRNw6Jjgfqf0oi0+WPO5YnB3BQx/1eTnI4/wqbvsXZdy/sj/up+Qpdif3U/IVRGnsgRVE
eAqDd3Qr1x9aelm62csXyKzHKY5we2TgZ5FO77Csu5aKxjHyLz/s0FY1UsVTA6nArPXTJVBzIp5+
XJPGQc/+PGnNpzD7ixMm3HlsSBnbjd9aV32HZdy6oidVZVQhhkcdqd5af3F/IVnrprlAjlPeQE7s
bcbfpUtnZywTGSaQOSueP7x+9+HAppvsJpdy35af3F/IUeWn9xfyFOoqiRvlp/cX8hR5af3F/IU6
igBvlp/cX8hR5af3F/IU6igBvlp/cX8hR5af3F/IU6igBvlp/cX8hR5af3F/IU6igBvlp/cX8hR5
af3F/IU6igBvlp/cX8hR5af3F/IU6igBvlp/cX8hR5af3F/IU6igBvlp/cX8hR5af3F/IU6igBvl
p/cX8hR5af3F/IU6igBvlp/cX8hR5af3F/IU6igBvlp/cX8hR5af3F/IU6igBvlp/cX8hR5af3F/
IU6igBvlp/cX8hR5af3F/IU6igBvlp/cX8hR5af3F/IU6igBvlp/cX8hR5af3F/IU6igBvlp/cX8
hR5af3F/IU6igBvlp/cX8hR5af3F/IU6igBvlp/cX8hR5af3F/IU6igBvlp/cX8hR5af3F/IU6ig
Bvlp/cX8hUMjLG+0RIfwqxVeRmjukkVSShDcZHQ+ormxU5Qp3juehltKnVr8tRXVmIkis6r5SDPt
TLpVEgwoHy9hU9xcyXuoG5kTazkEgZwOO2ahu/8AWL/u1OFnOcG59zTM6NKjViqStp3ubfh3TItW
uvImkdFWHflMZzwO/wBa6IeCrM9Lm5/8d/wrJ8F8ai//AF7f1Wup1LTWvwgWdo9itjBI+Y4weCOm
D+dFSbU7XsjCjTi4XauZn/CFWf8Az8XX/jv+FL/whNn/AM/F1/47/hU76HcGYGK9McSrIqAbsqGJ
wOvIGR+VOl0SWRSVljQnaNgL7AApHHOep3D3FLm/vl+zj/KU5PB1hEm+S7uEXgZJXvwO1KPBtiQp
F1cYb7vK8/pWgulyiC4iacHzZUkVjknggnJ98fhUMOhypdQTSzJIYXVgW3FiQpUnPbrwKFPR++Hs
4/ylb/hC7L/n5uf/AB3/AAo/4Quy/wCfm5/8d/wroNv+0aNv+0ay9rPuX7GHY5//AIQuy/5+bn/x
3/Cj/hC7L/n5uf8Ax3/Cug2/7Ro2/wC0aPaz7h7GHY5//hC7L/n5uf8Ax3/Cj/hC7L/n5uf/AB3/
AAroNv8AtGjb/tGj2s+4exh2Of8A+ELsv+fm5/8AHf8ACj/hC7L/AJ+bn/x3/Cug2/7Ro2/7Ro9r
PuHsYdjn/wDhC7L/AJ+bn/x3/Cj/AIQuy/5+bn/x3/Cug2/7Ro2/7Ro9rPuHsYdjn/8AhC7L/n5u
f/Hf8KP+ELsv+fm5/wDHf8K6Db/tGjb/ALRo9rPuHsYdjn/+ELsv+fm5/wDHf8KP+ELsv+fm5/8A
Hf8ACug2/wC0aNv+0aPaz7h7GHY5/wD4Quy/5+bn/wAd/wAKP+ELsv8An5uf/Hf8K6Db/tGjb/tG
j2s+4exh2Of/AOELsv8An5uf/Hf8KP8AhC7L/n5uf/Hf8K6Db/tGjb/tGj2s+4exh2Of/wCELsv+
fm5/8d/wo/4Quy/5+bn/AMd/wroNv+0aNv8AtGj2s+4exh2Of/4Quy/5+bn/AMd/wo/4Quy/5+bn
/wAd/wAK6Db/ALRo2/7Ro9rPuHsYdjn/APhC7L/n5uf/AB3/AAo/4Quy/wCfm5/8d/wroNv+0aNv
+0aPaz7h7GHY5/8A4Quy/wCfm5/8d/wo/wCELsv+fm5/8d/wroNv+0aNv+0aPaz7h7GHY5//AIQu
y/5+bn/x3/Cj/hC7L/n5uf8Ax3/Cug2/7Ro2/wC0aPaz7h7GHY5//hC7L/n5uf8Ax3/Cj/hC7L/n
5uf/AB3/AAroNv8AtGjb/tGj2s+4exh2Of8A+ELsv+fm5/8AHf8ACj/hC7L/AJ+bn/x3/Cug2/7R
o2/7Ro9rPuHsYdjn/wDhC7L/AJ+bn/x3/Cj/AIQuy/5+bn/x3/Cug2/7Ro2/7Ro9rPuHsYdjn/8A
hC7L/n5uf/Hf8KP+ELsv+fm5/wDHf8K6Db/tGjb/ALRo9rPuHsYdjn/+ELsv+fm5/wDHf8KP+ELs
v+fm5/8AHf8ACug2/wC0aNv+0aPaz7h7GHY5/wD4Quy/5+bn/wAd/wAKP+ELsv8An5uf/Hf8K6Db
/tGjb/tGj2s+4exh2Of/AOELsv8An5uf/Hf8KP8AhC7L/n5uf/Hf8K6Db/tGjb/tGj2s+4exh2Of
/wCELsv+fm5/8d/wo/4Quy/5+bn/AMd/wroNv+0aNv8AtGj2s+4exh2Of/4Quy/5+bn/AMd/wo/4
Quy/5+bn/wAd/wAK6Db/ALRo2/7Ro9rPuHsYdjn/APhC7L/n5uf/AB3/AAo/4Quy/wCfm5/8d/wr
oNv+0aNv+0aPaz7h7GHY5/8A4Quy/wCfm5/8d/wo/wCELsv+fm5/8d/wroNv+0aNv+0aPaz7h7GH
Y5//AIQuy/5+bn/x3/CopvB9pGYsXFwd8gQ529CCfT2rpSMAncelQ3XW2/67r/JqPaz7h7GHYxf+
ELsv+fm5/wDHf8KX/hCbP/n4uv8Ax3/Ct4gtuG4jsPyrIXQZYo/3V1iTbtJYswPybW6nueauNRve
ViXSgtokH/CFWf8Az8XX/jv+FJ/whVn/AM/F1z/u/wCFWYtEmSJY5bgSAKi7iW3AKwJUc9CB9alh
0qeK3u4/tPzTDCsN3qeTz1OccdhVOT/nEqcf5TPXwfp7Izi8uCqkqxyuARwQeKSXwhp8C7pru4Rf
VioH8qkk8MyyxlHuE2MrjywWCKSxbp3HI6+lTPodzJJcM12oWZs7FDbQMEdPxH5VXMv5xezj/KQH
wVZjrc3P/jv+FH/CF2X/AD83P/jv+Fa9haPaRSI8gbdIzDBJwD6k9TVnb/tGsXVmnpItUodjn/8A
hC7L/n5uf/Hf8KP+ELsv+fm5/wDHf8K6Db/tGjb/ALRpe1n3H7GHY5//AIQuy/5+bn/x3/Cj/hC7
L/n5uf8Ax3/Cug2/7Ro2/wC0aPaz7h7GHY5//hC7L/n5uf8Ax3/Cj/hC7L/n5uf/AB3/AAroNv8A
tGjb/tGj2s+4exh2Of8A+ELsv+fm5/8AHf8ACj/hC7L/AJ+bn/x3/Cug2/7Ro2/7Ro9rPuHsYdjn
/wDhC7L/AJ+bn/x3/Cj/AIQuy/5+bn/x3/Cug2/7RpQhPTcfpR7WfcPYw7HPf8IXZf8APzc/+O/4
Uf8ACF2X/Pzc/wDjv+FdCUKjLFgPejYfVqPaz7h7GHY57/hC7L/n5uf/AB3/AAo/4Quy/wCfm5/8
d/wroMckbjkdRnpRt/2jR7WfcPYw7HP/APCF2X/Pzc/+O/4Uf8IXZf8APzc/+O/4V0G3/aNG3/aN
HtZ9w9jDsc//AMIXZf8APzc/+O/4Uf8ACF2X/Pzc/wDjv+FdBt/2jRt/2jR7WfcPYw7HP/8ACF2X
/Pzc/wDjv+FH/CF2X/Pzc/8Ajv8AhXQbf9o0bf8AaNHtZ9w9jDsc/wD8IXZf8/Nz/wCO/wCFH/CF
2X/Pzc/+O/4V0G3/AGjRt/2jR7WfcPYw7HP/APCF2X/Pzc/+O/4Uf8IXZf8APzc/+O/4V0G3/aNG
3/aNHtZ9w9jDsc//AMIXZf8APzc/+O/4Uf8ACF2X/Pzc/wDjv+FdBt/2jRt/2jR7WfcPYw7HP/8A
CF2X/Pzc/wDjv+FH/CF2X/Pzc/8Ajv8AhXQbf9o0bf8AaNHtZ9w9jT7HMXvhK0trG4nS4uC0cbOA
duCQM+lcTd/6xf8Adr1LVeNKu+ScwP1/3TXlt1/rF/3a6aMnJO7OWvCMWuVHT+C/+Qi//Xt/Va7I
yTPcPFBCj7FViWk29c+x9K43wX/yEX/69v6rXZbbiK6klgMJDqqkPnIxn0+tYV/jN8P8BFLfrawX
Ut4giW2wX2tvyCAeOB60kGqW080kJfypo1DPHLhWAIznGemOpp/2eaRbrzZEV58cxruCjGOjcGss
eEbHyTGZJST1f5QfulcDjgc5x0/CsTc2EuYJFDJPEynkFXBB7/0NK88MeS80aheu5wMcZ/lzWQ/h
W0kZWklmZ87mI2qGYsSTgDAyCV47E1Lf+H4b+8kneZ1Eg+aLYpUtsKA8jPQ9OlAGgby2HJuYBwD/
AKxeh6d+/b1oe8to5DG9zAsgIGxpFByenGayofCtpDei5Msksm9JCZApZmUAcnGcHA4qW58N2d1P
PLJu3zF2YgLnLBB6dtgx+NAGgbu3AybiEDf5f+sH3v7vXr7daQX1oel1bn5S/Eq/dHU9envWZb+G
YbW6a5jupjM0pkZnVW3ZGCDx7DnrTf8AhFbQKEWR/LESx7CiEZC7A3T0PTpnmgDXNzAPLzPEPN/1
eXHz/wC76/hUQ1K0aeKFLiN2mLBCjBhlcZGR35HFVZtBhuDamSeZjBGIyWwTIAQ3JI4OQORiqk3h
WGO3xZuyyrGsaEkKEICrv4H3htB+tAG8rK6hlYMp6EHINJsMk6JvZQQxO32x/jSQwpbwxwxjCRqF
Uewpd4juI3YNtAYZCk+npQBL9jH/AD2m/wC+h/hR9jH/AD2m/wC+h/hTvtkPq/8A37b/AAo+2Q+r
/wDftv8ACgBv2Mf89pv++h/hR9jH/Pab/vof4U77ZD6v/wB+2/wo+2Q+r/8Aftv8KAG/Yx/z2m/7
6H+FH2Mf89pv++h/hTvtkPq//ftv8KPtkPq//ftv8KAG/Yx/z2m/76H+FH2Mf89pv++h/hTvtkPq
/wD37b/Cj7ZD6v8A9+2/woAb9jH/AD2m/wC+h/hR9jH/AD2m/wC+h/hTvtkPq/8A37b/AAo+2Q+r
/wDftv8ACgBv2Mf89pv++h/hR9jH/Pab/vof4U77ZD6v/wB+2/wo+2Q+r/8Aftv8KAG/Yx/z2m/7
6H+FH2Mf89pv++h/hTvtkPq//ftv8KPtkPq//ftv8KAG/Yx/z2m/76H+FH2Mf89pv++h/hTvtkPq
/wD37b/Cj7ZD6v8A9+2/woAb9jH/AD2m/wC+h/hR9jH/AD2m/wC+h/hTvtkPq/8A37b/AAo+2Q+r
/wDftv8ACgBv2Mf89pv++h/hR9jH/Pab/vof4U77ZD6v/wB+2/wo+2Q+r/8Aftv8KAG/Yx/z2m/7
6H+FH2Mf89pv++h/hTvtkPq//ftv8KPtkPq//ftv8KAG/Yx/z2m/76H+FH2Mf89pv++h/hTvtkPq
/wD37b/Cj7ZD6v8A9+2/woAb9jH/AD2m/wC+h/hR9jH/AD2m/wC+h/hTvtkPq/8A37b/AAo+2Q+r
/wDftv8ACgBv2Mf89pv++h/hR9jH/Pab/vof4U77ZD6v/wB+2/wo+2Q+r/8Aftv8KAG/Yx/z2m/7
6H+FH2Mf89pv++h/hTvtkPq//ftv8KPtkPq//ftv8KAG/Yx/z2m/76H+FH2Mf89pv++h/hTvtkPq
/wD37b/Cj7ZD6v8A9+2/woAb9jH/AD2m/wC+h/hR9jH/AD2m/wC+h/hTvtkPq/8A37b/AAo+2Q+r
/wDftv8ACgBv2Mf89pv++h/hR9jH/Pab/vof4U77ZD6v/wB+2/wo+2Q+r/8Aftv8KAG/Yx/z2m/7
6H+FH2Mf89pv++h/hTvtkPq//ftv8KPtkPq//ftv8KAG/Yx/z2m/76H+FH2Mf89pv++h/hTvtkPq
/wD37b/Cj7ZD6v8A9+2/woArqpSWVNzMFIwW69BVa51OGCURAhpd23b6cZqyrB5pXAO0sMZBGeB6
1jyaVeTai0sjoY2ck5AxjGOnXNKcW6cuV2lbT1FzWktLq+prxyedbLIARvXOD2qO6623/Xdf5NTo
IBbWoiViwUHk026623/Xdf5NSjflXNuU7X0KusXV3awwGxCNLJcohVxwy4JK+xOMZrIj8ZoF5t2n
Lec67SEICuwVSCPRcZ9a6cYyxOMD1pcKecKffFUI5648WPao5m0194bYqrOpBIcocsQABkcHvkdK
27O5+12qzBQu4kYDhsYOOo4qYqpBBUEHqCKAAOAMD2oAWiiigArO8Qai+laJcXMA3XGBHAu3O6Ri
FUY78npWjVa6vBbPDGIJZpJSdqxgZ4GT1IoA4hPHt5BPB9rjLiOILcRJEA3nL5gfJ/hGUB9hWrY+
Oo73UYbX7AVWSUQtKk4dQxd0BHHzDMZOeOordkuJZI2Q6XegMMErsU/gQ2RUVmBYWy29ro93HEpJ
A+QnJOSSS2SSSTmgDn7rxhdafdvJP5cirNcI9iAFkjjjHyyZ6nPB54wwx0p0/wAR7KCXYtpJNzIP
3cgP3SwB6Y2ttJyCcd66J5WlkSSTRrh3TlWZIyV+h3cU4XUoxjSbvgY+7H/8VQBzFl47kFvdPeW8
T+RvfzEmwhBmaNEXCnJ+X73Aph8ezeYZ2sytqCjpEhDSujQGT5s9OR1Hoa6r7VLjH9k3ePTbHj/0
Kj7XNnP9lXeemcR//FUAYXiLxHf6cNLmso4ZYpo55biONvNyiJnKNjkjOffGKq2XxA/0C2a5snkm
eNAzqwQFyEJZhj5I/wB5wx9DXTi7mAAGlXYA6ACPj/x6j7XNz/xKrvkYPyx9PT71AHL6f49nksl8
7TnuZ1gM0jxypGrfeI2hsZGFxkd+1bkl9aahaabfTsq2kkEkxLOVUDC4Jzj171cNzIcZ0m6OBgZW
P/4qqGpxXOomMfZb2FYwcBUTPOM5+fGOB2o6AZulXJvdVvJLeN4rNDCAHLfvMyDayg9vlPPfNWn1
rVU1RrfZaZMsiCJiV2ouCGLHqWBHt+RqfTdLl8uWZbqXfK6q/wBoTcw8tjgcNjrmrMujCbUUv5fs
73SLsV2iYgD/AHd+MjscZFRCHKrXLnLmZYsZkuJ7maPO1/LYbhg/d71cqC3hkjkmklkV3lIJ2ptA
wMepqerICiiigAooooAKKKKACiiigAooooAKKKKACiiigCnq3/IKu/8ArhJ/6DXll1/rF/3a9T1b
/kFXf/XCT/0GvLLr/WL/ALtdeH+FnHifiR03gz/kIv8A9e39VrpNmpZ/17f98j/Cuc8F/wDIRf8A
69v6rXZSuIA7TTwxhMbi0gG3PTPpWOIdpmuH+AwW1eZNRFmbqQvuEZcRgornohbHDH0q/s1L/nu3
/fI/wq9a6WtpbLBbxRpEp3Bc55znOT1Oe9VdS1SPSWxciQ4jMhMa5AUep/pWekvhNb2V5Mj2al/z
3b/vkf4UbNS/57t/3yP8K0LYteWsNxCQYpkEiE8ZBGRxSRusyyNFPA4jJDlZAdpHXPpSKMS71C7s
bm1gmnlBuSwVgi7QRjr6ZyAPeo01otAssmpLFmNJCsm0Mob7uRjvW3d6QuobTOocCN0GHwNr4z/I
YNUrfwja206Sp5peMIF3y5xtAA7Z7UAVF1beqsurQkPJ5akFeW646e4/OruzUv8Anu3/AHyP8Kjf
wvZJNasx2SR7Ui3SAk7VAAwQc8KPfitnyJj/AHfzoAytmpf892/75H+FGzUv+e7f98j/AArU+zzf
7P50fZ5v9n86AMzZqHl/69t27rtHT8qojU7gNdCS7aJbZgrPIoAbPHHryCPqK6IQTD+7n61kjwla
oweJZIpQc+akp3Ft27cc5Gc57dzQABdRYAi4YgjIO0f4Uy8mvrS0e4eZ9kSbmwoya0E0yZJhJ9on
Yg52tKSp69vx/QelSXNg93bSQSgGORdrANjigDPKakMjz2/75H+FR3019aQSzmWVkQAhEQFmPQAe
5NaMemSxSiTz53PPyvKSvPtRe6UNQiWK5QPErh9m8gEjpnHagChbtfTxxSrcMY3AYfKOQfwqnqmp
3mlmMyvMyybj8oT5VXGTz16jgc1paTawwefa2LuY7dghRnJWPvhc/WoZZNOv9UjRniubmzdgqD5g
jnGR/vDH4VSi29EC12JETUA/zTsRg/wj0+lRyG/ijeSS5ZURSzEqOAOT2q4sZsnjSSSZ2uGwokYt
g/0qc27XETKfLkjcFWG7II6EUmmkO1jnotXuGXNxdfZix+RZWjyw27s4Gccc4ODUqajJJGJF1OMo
QDnK+pHp6g/lVpfClv8APv8ANkLoYyXlydpXbjOOwHHf602fwnHMpPmzeaQcs0ufMbkgvxzgk9MU
hDLW5ub6LzbS+WaPONybSM/lU+zUPLH79t2TztHT8qsaZoz6ZaCFZGkchd8jtksQoX8sAYqzKrQR
GSaSONF6s74A/GhgZuzUv+e7f98j/CjZqX/Pdv8Avkf4VqCCZgCCpB6EGk8qQOF3JuIyBu5xQBmb
NS/5+G/75H+FZdvr00kXmXFw9orIsiGfZh1YkAgjPcHjrXUeRN/s/nWP/wAInaPCsDNJI0JUozyB
mjAzgAEYx8zdR3oAgGpOcY1JCCxQYxyR1HTtUa6zu2/8TSIBziM7l+fgHI/MfmPWtFPDMcbs6STK
zbwxEgAKtjK4xgLwDx371Wk8N2/2qG5+07Lfy9pXzeJMBMZPpiMZFAFWDXPPt0nXUlWKTbsZ9oJz
ntjI6HrVm3vJ7uSWO21BZXiOJFTaSp5HPHqD+VSjwtbbggkl3qgXib5tmCNvT7pBx+HWrVppMNlc
kQFRL5ZGwyZO0uWzj/eY0AQbNS/57t/3yP8ACjZqX/Pdv++R/hWp9nm/2fzo+zzf7P50AZapqO4Z
nbGeflH+FQXlxqFtIiI0sssrERxoFBOOTyeAAK2/s83+z+dUb+2hnP767WCW2+fzEmCPGDxznsen
IoAzf7SkEoibUkWYv5flkruD/wB368iok1wy3Igh1JZJCA3G0DBbb1I657dauy6BYzTGRpV82Bmk
dvOBK78E5yOM7Qc8H0NJH4Ts7ZUi3PtY42PKP3hB3cjHPTt70AVhq4YRkatCfMbYnK/MeOOnuPzF
LcapLa3q2st9iYqzMuB8igZy3HpVkeHbKO1aR5i0YQo0rzj7oK8E9OPLUfhTrnQrXUryR2uGMjrv
Mcc4wMgLvxjuAB6HFAFCPXFlLhdVjwjqm44AJYblwcc8GtPZqJQDz23buu0dPyqCPwlZNFF5TMyR
MGjxIrAELs6EEcgYP07VryhreMyzSRxovJZ2wB+JoA5eHxFJNFZyC4mUXUjxgMijy9oJJb0HHX3F
Sza2YooXXUVk85wkYTbljnH6E81b/wCEb0sq8RKHYEVwZ+QMELn0yGP149Kk/wCEZt5mJM8zurDz
T5/MhBDDfx24x0oDQzbbXnuTMRe7I4SVaRimCQFzjuR8wGakn1k28qRSakPMdlUIFGcsCVzxwCAe
aur4dsmSJI5CCpJiZZ/mBBXJHuCi/rSN4dtPt80rXL/ajiSQmcbgBkZ6dDk9fwxQBFb3txdSeVDf
q8oQO0alSQCAe31H51aRNQ3runYjPPyj/Ckt/D9vaunkTSIWH7tRP/u5K/XaM/0rQgsZoE2+Y8gz
nMj7j+f4UAZ+zUf+e7f98j/CjZqX/Pdv++R/hWp9nm/2fzo+zzf7P50AZezUv+e7f98j/CjZqX/P
dv8Avkf4VqfZ5v8AZ/Oj7PN/s/nQBl7NS/57t/3yP8KtQStbWcs2oThUjyzSOQoVQOSatfZ5v9n8
6hngvs4ha1CEciVWYn8qAM2HX7PWNJtr/R7lZrea4SIsByPmwQQeQa0brrbf9d1/k1VprG/mEYmk
sljjlWUiKNgTt59as3XW2/67r/JqAK+rW0t1bKscYmVZleSEkDzVA6c8dcHB4OKykstfitFVJQhA
VRFAY0CjYenGB8+Mj0HFb9xcxWcE1xcOI4Yxudj2FShlIBDDBGRz29aAOavn8QROifvNjTeXugaP
L5YkYyPlAXAya3NOW6S0Avm3T5+Y5BB4HTAHGc1NJcRQmMSOFMriNPdj0H6Gn7hx8w596AFopkc0
cwJikVwGKEqc8jgj6inZB4yM/WgBaxvEMEt0sUFuXE0sUyIUba2So6Hsa2aQqpdWKgsudpI5GeuK
AOduofEcVy93AG83ylt+odQqvy4XOCzDJ+nHapZf+EhmufOj3hoDIVyihZAdmF25z68nJ69K39xo
3GgDFu4tQh1zULm3glYtHGIXCbsDjfty2M4ycEcnvUWi2+tQ31mbrz0twriUYU7yQCC/Jxjnp06V
v7jRuNAFuiqm40bjQBboqpuNG40AW6wtVsLy71O1mtdYms4InP2iCNEYTr2GSCVOe/p71pbjVc2V
qxJa1tySckmJef0oAbYnMMpH/PeX/wBCNWaaiJEgSNFRB0VRgD8KdQAUUUUAFFFFABRRRQAUUUUA
FFFFABRRRQAUUUUAFFFFAFPVv+QVd/8AXCT/ANBryy6/1i/7tep6t/yCrv8A64Sf+g15Zdf6xf8A
drrw/wALOPE/Ejp/Bf8AyEX/AOvb+q11Op6M9zJeywxRF50iCHzDGQ6FvmJA5xuH1xXLeC/+Qi//
AF7f1Wu4l1azgeZHm+eHaHUKSQW+6AAOScHpWWI+M2w38MsxKyxIsjbnCgM2MZPrXD+KtPvomm8+
a6u4bhgsOyMMQCf9VhQMHPRjx2OMZPdA5GaytY1+LSV4hkuHXDSJGRlFJxnnqfRepxUU5SUrx3Cv
CMqbjN2Q3wxpt9pmkRw6jdNNLgBY+NsKgYCAgDOB1J61lWfhrU7dZAtykWWblJDluJNvIUfLudTt
Oeh5PSuntLuC+tY7m1lWWGVdyOvQim2t9b3qM9u5ZA23cVIB+hI5HuOKlu7NY6KyOdu9P1aytpZ2
vJ5gxy8UcshLfPlQm1SV49B9fWpG0jU54rK5EzrcixWGbdOyEtuVmHAIyQGG7qM5robi5htbd555
AkSDLMe1Ks8TySRrIhePG9QeVz0zSGYN1oV9cwWb/ait1bwTRiTzWyrPjBzjnABGSM96G0bVJLmR
TfSpA0oJK3L7mjzkAcfIQOOD83U1ui4iNy1uHHmqocr6A5AP6Gi4uobW3aeaQJEg3Fj6UD8jN0DT
brTluftkvmyTOrl/MZsnYqng9OQenXNa9V576C2mhhkZvMnJEaojMTjr0BwBkcmrFAgoqOeeK1ge
adwkaDLMe1R29/b3OfLk+YLuKOpRgMkZKnBHQ9qALFFRwTx3VvHPCweKRQysO4PSpKACsjXb7UbG
MNY2n2hHUp8udyOehx6Vr0U07O4mrooaNp/9maZFAx3S/elb+855Jqxc2kV3CY5FGDyGHVT6g9jU
9c5rviy2sbuTSrS5hGrGMOiS52rnpn/D6U7y1mk3bXRX/IOaMLczsu7EbVI0vNO+2SqssU5t5CSB
lzlV/MkfnTW0rWFsre2hljt0huWkeSKZtzoXLdNvoSMfTmk8K6xbTtJp09lDYagrNK0Kfclycl1P
fJOTXRQXMNzEJYXDISVB9SCQf1Bpe3hXip09v6ZvWhOnLlkrHNjT9cu0tp0vpYx84aMsUJHARiCD
2GSOOW9q09Isb2yuJvtM7TQmOMKXmZ23AYbg8AZ/H9BWrketAIPQikYi1Q1mye+08xxIGlVg8ZMm
zawPBzg9PQg5q/UF1dw2UQkuGKqWCgBSxYnoAByT9KAOeGh63JLMJ9TfY7ZHkymNQAhACqBlfmI7
84qWHQ9RkvbiW9nV/MtZIA4mbq23GFwAuMHoeetdCrqyhgeCAeeKjku4IpvKklVX8syYPZRjJ/UU
DMbStK1K0uIftE5+zpCEKi4Z+iAbcEddwLbuvOKo2vhjVLSDNte+ROIVhDeczg4Rxkgjk7ipGemP
z6pJElRXjdWVgGBByCPWm29zFdQRzQyB45BlWHcUCWhlQ6dqS2FlGbx/NRitwXlLEoTnhgBlhgAH
HQms6bQdantJrd7xGEkQUl5WIJ8tlIAxgDJB6Z6/SumNzELlbcuPNZS4X2BAP8x+dS0AtDk5dA1l
l8yG8MUhCqQs5L7AzHb5hX/aBzjtjpV6fQ7t9VmvILpojL5W4iRs4RHGMdMbmU474Nb1FAHNR6Lr
JSPzNQdCnIUXDtlspkk4yQQH4PA3flFLpWqW2m6Vp9pJKrR+Yski3D4HB2sWxk84O38K6qigCrE1
75oE0cHl85ZXOe+OMfT9aytQ0u8u9Ref7PausZXyQ0mA44JDDb1JHXnoOOtb9UrnV7OzleOeVldR
ux5bHd0Hy4HzHkcDPWgDnJPCV+9i9qtxaoBGyFmQv9oydw3DjG09OTW9Npss01pJLKkzwXBk3MgB
VSjLtGPqKcde00RzyG6URwKGdsHGD3Bxz6cZ5qzNeQW80MUsgV5yVjGD8xAyf0BoAzodLuLTTWgh
dAB5u2FMKvzOWByVOMA+mKr6PoVzYXUTT/Z9kaEbo85bKqu3GOg2/jnoK14tQt57L7XC5kg5wyIx
JwcHAAyeR6VHbavZXcvlwTh2KeYMKcFcA9cYzyOOoyKAepBZ2t5p1oLe2itSgaRgN5UDczMBgL7r
+tT6rDc3GnPFbJE8j4BEjYGO+Dg846cVNaXkN7EZLdiyhip3KVII6gggEU65uY7SBppiwReu1Cx/
IAmhjOeHhuZo5YzHbIoA8v5ixPzq3Jx1XbgH37VqwadJDeXUscixRzXAlKogO8bFUg5HcjORQde0
0bj9qXClQTtODuOBg455I6dO9WoLyC5aZYZAxgfy5OD8rYBx+RFMRlwaG8DWhj8mNrd5yGReVVyx
UDjtkcdOKq3vh2+u5ZwtzAokVt0zpuaUMiqUZRjA+XOQe/StiDV7K5eBYZwzXG8xAA/NtOG7dqWX
VrKCaaKWcK8EZkkyDhVAyecY4BBx15FIZUGlzoNMkUW73FnCyFiCoY7MYBwSBmtCBrks/wBoSJV/
h2OTnk9cgdsfrTRqFqZreISjfcoXiGD8ygZz+RqzTYugUUUUgCiiigAqOTrUlRyfeoAjk/1bfSqd
11tv+u6/yarcn+rb6VUuutt/13X+TUAR6hYf2jEsLTyQosiuxjxlsdBk5xzg9O1Zq+GSsLxm7Eoa
NEDzQhnAQjCk5GUIAyvfk96uaxdXVpDAbEI0slykZVx95cElfYnGM1lW3jFXYhraSRB5khlBCbYw
7KPlPJICnOKAJpPCaSXU8xumQzEMfLUqUwu3C/NgDuOMj1qI+DI/7OktlulRnRYy6xH7oLE4yxIy
WB4PUD6Vd/4SOP8Asq5vjbOgtyEKOwG5j/DnHHUc+9Rp4ojkgMqwKozGoEs4QguActx8q843dz2o
AYnhSOOVGWdAqyM/EIDDLh8g54bIwT3HFTWPhxNPuoZIpI9kaRqV8kZYqMbs54J9vfr1qnceLjHP
KVtJBFbSSLJ8ylpdqseB1XkDk9RzUj+Llih8ySxYDfGm3z1JJYZOCBg4HvzQB0VNeRI8b2Az0rnY
PFjCBDc2iebsZnWKYHoXACgjJ+5z6ZFbel3bXjJI8axthgUWQPj7p5I789KAehL9oi/vj8jR9oi/
vj8jWhRQBn/aIv74/I09CJFDJyD3FXaxrvU7XTmAunKb2kKnHBwTxn1ppN7CbtuXGITbuIG44Ge5
9Kdtb0NYGmpJcxJqFzlXvLhSq5+5GA23/GshtcuI71o1kmbR0nEUt2BypPv6Z71FSapuzOnDYaWI
Tcen9ff2XU7QMCWAIJU4OOx9KWqtigj+0ov3VnIGTn+Fe9Wqo5wooooAKKKKACiiigAooooAKKKK
ACiiigAooooAKKKKACiiigAooooAp6t/yCrv/rhJ/wCg15Zdf6xf92vU9W/5BV3/ANcJP/Qa8suv
9Yv+7XXh/hZx4n4kdP4L/wCQi/8A17f1Wut1XQV1R5HaVAWEe1ZIg6grv6jIz98/QgVyXgv/AJCL
/wDXt/Va7K61gWzXarazyNaqrvjaoZWzyCSM42mssR8ZthvgL0MXkQRxBmYIoXcxyTgdTXEeK9Ae
GeSTS9MvbqW4UuWSfcqy5HJDt6cDHpXcROZIkcoyFlBKt1X2Nc3rHi9LOT/QPs9wsUuyUGT5nx95
U9x6njPH0mm5qXu7ixCpum1U2L/hnRYdF0eGOKJ4ppUWS4VpGb95tG48kgHPXFVJvCXn3KTNdgKk
5mWFI2WMZ7gB+G4znOOvHNalprNlf6R/aVpL51tsL5QZbjqMdcj0pkOvWLW8UlxPFbGSMyBJJUJ2
j+LIJGPxqHdvU2VktDJk8ExG1EEVyqJhQQ0AYZCqpcDPDnbnd7mrWoeF0vby5uFliQzsrMGgDZIQ
pzyM8HI9CM81cfX9PD2qx3KStdOEiEbAk8kZ+mQadDr2mzttS7jDGZoArHBLqcEDPv8AzpblXKd5
4c+1ahFdLdbGjhWIMYgzjbuwQxPGd3IxziqkXgwR2LW32wEPC8RcxfNHuLHMZLfJ97nrnA9K111y
w+0XcMk6xyWpPmK5AOMA7vp8wpJ9e0+DZ/pCPuK5KMCFDdGJ9KAK58PnOmlZo82JbG6I/PnHPDD5
uOvOSScVs1Q/taJtWjsEUs7wibfvUDac4wCcn7p6CrFrdJeRGWMNs3MoJ/iwcZHtkUCG6hZ/brNo
fMMbZVlcDO1lIYHHfkDisyfw59sv0u7uWCSTEYk22+N2xiwHJOB83IOegrVvLpLK2aaQMVBACqMl
iTgAe5JAqmNfs45mt7xvslyqK7RSkZAYkLyCQSSOgNADrHTrqxt7eBb0NFCqrgwjJAAHXPsfzrRq
CzukvbOG5jDBJkDqG6gEZ5qegAooooAK5/xR4P0/xNanzEWC+UZhvI1xJGw6c9x7V0Fcb4q8Zw2G
qnQg89nPNGCl3s+UE9lzwT0/OtaLrRlz0U3Ja6b6fn6ETlCK/eOy/rsYvhSz1DV9TFtqaSQXmiXQ
3XCqdsgB+6D6MP0PvXVXHhiWe2ggkvQ0NvcGdEWHBOW3YJ3deSM9OelV/D3iS4F4ml60yNcyc29y
i4S4Hpjs1biazZm0juJZRBHLIY180gZYEjH6VzxqUazdairKTvZbX66dNdbGzpToQjSbvFfD1Vnr
o+3btsYq+E3uo7aW4uHjmQOChy20HAUZVh8yqAM8g8+taek6Imk3ErxOnlvHGgRY9uCoxknJ6+gw
Px5qy+rWEbIr3kCs/wB0Fxzxn+RBp9pqNpf7vslxHNtAJ2HOAeRVkFmqmp2J1Gxe3DRqWxhnQsB7
gAg59CDxVuqmpahHplp58iM4LKgCkDknAySQAPcmgDEHguFppnuLprgStvYyqWZjsZeecHBbI4HS
p7bwusNzcSS3AlE1u8DZiG5g23JZs/NjbxxwDV+XXNNg8wT3sETxkCRXkAKEjIB9+D+VJJrthHdS
2/nKzQwtPKUOQirjOffmgZU0zw2NOvIp/PRvLjCAJDsPCKuM5Py/Lnb6knNUo/BXlwQRC9CrFMkn
yQ7d2zoeG+96nv6cVuWmr2N80a29zG7yRiVUz820jIOPxqK08QabeWsVwl1GqyOsYDMAQ56KfegR
Rh8LCK6tJvtKE2rMQBDgS7ipzJz8zfL97jnnFdBWeNcsWu0t1nRi+4BgRt3Agbc+uWFR3GuxwyvH
FbzzshbcIwvCqBubkjpkD1JoA1KKzxr2llXb7fbgIAXBcArnpn35H505ta01SQb634jEh+cfdPQ/
qPzoAvUVmf8ACRaatzNBJdRxvCnmNuYYC5wDn69utW7S8jvFkMWfkfaffgEEexBB/GgCxWRdaPc3
N7Jci8jVgVMG6EsYsY4+9gg854B6c8Vr1m3usrZXX2drWeSRlzEEK/vDkDAyeOvfHegDNfwcj232
f+0LhIo1ZYfLABXdyd2c7ueRwMfrWu2mqWgImlPlT+d87l8naVxyeBz0HFUv+EptDbS3AiuDEqb4
yFBMozg7RnPB9cVoXF8ltPbRMkjG4cxhlAIUhS3P5GmBXGkbLR4lnYu3mcvuKfOxY5QMM9cZ61BY
6A9i4ZbwvsQiPMYyrlQpbryPlGB+pq3FqiTaY16sUihd37uQqrfKSDnJwOnrUVlrkN9MsccM6h03
KzgAEgAleucgMPb3pA/MS1029tbYRLfRbuSzi3++xzljljzkjv2qzqNrNeWTQQ3AhZiNzFCwI7jA
IPPTg0thei+hdxE8TJI0bI+CQR15BINPvLg2trJMIml2DJVSAcd+SQKGBljw6SsqtcjYwwipFtCZ
YM3fkZUY9B61fTT1W6mnMsmZJRKArFQCFC4ODyOM4NUv+Elt9jP9nuSnylW2j5gWCk4zxtJGc/hm
tC3vkuZbmMJIjW8nlneANx2g5Htg0wKyaOq+RmdyIpJn44J8wnuDxjd1qpdeGFu3YNe3CQ53Kq8u
GKhSSxzuGFHBHXvVu31qK4ktkEFwhuDIAXUAKUJBDc9eDSXGvW9tPOjxylYUY71AIdgASqjOScMK
Qx39lssNksdywe0jKK7KDuJTbkj9atW8c8bOZ5xKD90CPbjk+/PGPy96hGpxmazj8qX/AEtC6NgY
XAzg89cVdpsXQKKKKQBRRRQAVHJ96pKjk+9QBHJ/q2+lU7rrbf8AXdf5NVuT/Vt9KqXXW2/67r/J
qAHSTRwsN+4ljhQqFiTj0FIk0MsoTYwkwSu+Irx3xke4pJmaO6glEbyKjHcEGSMrinGc3F/C4gmR
I0cEuuOSVx/I0ASDZInG1kb0wQaCiHOUU5GDkDkelY2l6Tf2N1A8l2TBGdphWQ7Nu09FxjO7BzVW
10TV7WGKGG8MaxoyqxnZwpy5yVI+bO5ev3dvFAzoiYlfBMau3Y4BP+NKI0AACLgdBtGBXLz+H9Tn
MMrShpIiCFa6beADnAl259TnHfFWYtL1o3ytcagTbgxbgkrDcF+9xjgnvzzQI39i5ztXPPOPXrUc
0ot2SUMFOdgGwtkn2HPapqq6gjyQII/NBD/eiALr8pGRnuMigCRdQd5Vi3hXboHgdc/n9DUouJix
USQlh1AXkfrWBomk3FneG6v5572/mf8Ae3UkIjAjVSqKFzgdcnHUkmiTSNVF3dXUNzArXOQ6puRt
oYbBv552gjOBjdQBvm4mDBTJDuPQbeT+tUrrTjexNFcTB4mbdsMKkA5z35rLTR9TgnnltZxGWkaZ
VkuHcMxVAFbI6ZVgfXNXNNsNQtdTuJLq9kuLZkAiDPwOBnK4653c5700DLTWUrrGpvGCxkFQIkxw
MenvUK6OqWL2aygW0gIaMQpg561pUVNkylKS2ZBaW32WIp5jPltxJAHYD+QFT0UUyQooooAKKKKA
CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAp6t/yCrv/AK4Sf+g15Zdf6xf92vU9W/5B
V3/1wk/9Bryy6/1i/wC7XXh/hZx4n4kdP4L/AOQi/wD17f1Wu6m06CeWWR92ZQgbB4IRiwH5k5rh
fBf/ACEX/wCvb+q11Oqa5cWElzGlqjmIRmP5yS4bdngDPGw9M+vArKv8Zth/4ZtVwXiLwTqt00se
ktpyxTRhXd41iYN8391OmG613cUglhSQYw6huDnr71yHiLxKytP/AGbeSqYFaIose399noSy8kDn
Aqaak5WjuOtKEabc9jo9O0tdPs5IEZBvOS0USxYOMdFGM+9UT4Q05nLt5rO6ssjErl8knJ445Y/d
xU/hvWYtZ0mJ0mMs8SIlydhXbLtBYcgDOfSqNp4tEkcpuoPLOT5WxWOQN5JIIHAEZORkdhzUWaZq
nzK6L/8AwjtoL1blWnVhL5xUP8rNuZgSPYs350N4etGufOLz58xnK7/lOWD7Tx03DP8A9bimJ4ns
nLKq3DODhQsLfvDnB2euD1ok8SWySQAQ3DxT2wuEkVODuYKq467iWFIBbnw1Z3c1xJJJcAzncVD/
ACq2FBIGO4QDnI/OmHwpp5tvsx877OGRxFv4DoAFb1zwPypLzxJFbG0kWGVreaOWWRyhzGqDkY67
snGKkfxLZxlgY7osG2KohJMjZwQvrg8GgepaGmRjUUvfOm81YhEwJGHAzjPHX5j0xUcWjiKMxrdX
CoC21Y32hQSxx9fm6+w9Kpv4mWXS7u8tLeQiCWONDIpxJv2YYAAn+PpjNbMDs8EbSAB2UEgAjn6H
n86BDLu0jvbV4Jt2xscqcEEHIIPYggGqn9hwtPHNLPcyyJt5dx8xViVJwO249K0qKAKFtpMdokSQ
3FyI4gAqebxgY4+nH6mr9FFABRRRQAVn63oll4g0ySx1CISROOCOGQ9mU9iK0K4Txx4ju9OvfsN7
YTx6LOoQ30bfxnsSPu9uvXmtaUKspfuVeS1SvZ/K/Umc4wV57dbK/wCBD4U8Mamt7Laa5E7W2mXI
ks7knBl2nKn6Yxn8q6eTwxayJGrTXDpFMZ40dxtVi27HTpn8fesLw9r0+mXdtp99cPd2V2wS0unb
LKx6I5757Gt//hIreGwt7m7Vo/PmaFVQbuQxUfyH51zqvDESlWjGzb1W2uzuuj7+Zr7H2MIxhK8N
4tbWfb/LoQx+FLR4YDc5M8e/LJjGHOSo3A4AwAO4AFaNnpcNjcSTRPKS6Im1m+UBRgcevucmqkvi
nTIpIkaSQmUFl2xk8AAkn6ZA+pq1p+rwamzrCkylFVj5ibeGGRx9KsgvVXvbQX1q8DSSRq4wTGRn
HccgirFZ+tajJplis0MYkd5UjAIY/eOM4UEn6AUAirB4V062lZ4ldQxLbcjglSp5xnox6mprbw9a
WsrujTlWiaIRs+VVWxux9SAaqx+K7UwxySI6naN6qhf5iqnapHX7w/OrVv4hs7m4ghjE+6Y7QTEQ
FbDHax7H5T+VFgHWehW1lcJMkk7sigAO+RnaF3dOu1QKqjwjYeXEjSXLrE6su6TPC/dXp0H58nmp
LTxLbXRiVoLmJ5HKYaPhPnKKWI6BipxUUfieITXKXNvNGI5ZI4wqFi4QqpP4swAHvQMnj8OWkU9t
MJJy9puFuS/+qU4yo46YGOc8UsugwzSSMZpo97s2Ym2na+N6k9wSM+o7Gq914usraKRhDdO8cZYo
IiPmAY7CTwG+RvyrbjfzI1fay7gDtYYI+tAjn28KA+YVupEY3Ilj29Il3KxCj1O0cnPSrP8Awi1i
EZFadUZcbd4IDYCl+R97AAz/AFrZooHcxZfCthKjoxn2vgkF92SGDA8g5II7+pq/p9gLBJFD7y77
s7QMAAKBgegUVbooEFZk+hxXFxPM1zdK0xVvlcDYV6FeMj6dOTxzWnWRf6rdW18baCCCTeFCMXIC
sT0fjjIyRjnigCOTwlpU0bRyxO8eCsaGQ4iz12+me9aP9m2qmLy4lj8uXzgEG3L4IyfXg1gyeMhF
ZNcyQwosqFrZHm2lypwwYkYHrxniteXVVM1qtqI5o5Z2gkcPjYwUt0xz0oAk/sm2WEpGCjndiYAF
13MWIBIPGT0qG10C0s2JhaYfuygG/hcgAsPRiAOfamwaw09gWKxx3hEhEOWcfIxXsMnp2FQ6Zr0l
/NGGgjSORDgiTJDqqswPHT5uvtQDLMGjLb2yQJeXm1F2g+YAcc+gHr1+lWL+wTULT7PJLLGuQ26M
jPBz3BBH1pul3c15aGSeNEYOygoSVcA8MMgHBp+oXElrYyzReXvUZAkJAPtwCaGBVGg2v77e8z+b
jO5+nIY49MkAmrQ0+3895miV3eQS5cA7WChcj04ArIbxFcqju1kgHBVTKQww6o+7jqC3Hr7VoQ6o
DdXEFwEiZJxDF8+fMygYduDz0pgPGlWo8sFSyxtIwVjkHfndkdxyarT+GdNuZGM0JMZHywhsIhwB
uUDocAD8KbBrcrG1NxbxxJK0yyMJc7DGT7cggdar3nimO0aWQrCbbBWBzLtMkgUMByMAEN19jSHq
aZ0q38m2iQyILaMxxFXwVBXb19cVNb2v2dnPnTSbu0j7gOSePz/QVUj1R5JdNCxIYr2MuXEmdp27
sDjke9aVN36i6BRRRSAKKKKACo5PvVJUcn3qAIpP9W30qpddbb/ruv8AJqtyf6tvpVS6623/AF3X
+TUATjq1LVa+he40+8hi5kkiZF5xyVwOayZYdc8plieQOJDyjxhdmDs25HAB27s8nnFAG/UMo3TR
ruYAhj8rEelZtpDrEd+Gup2kgZmLKpQBPmO3AxnG3Ge+fxrRlOJ4yTgbW5/KgCrqN7Bp0a7vtE00
mRFbwsTJKfRRnH4kgUSXMYvXs0FwZFtzOzhztTnAB56nkj2BrKYCS1vtde/FqGjzDcACRY7deeAe
Mtyc+4q9psEsen3Fxc5+03haaQH+AEfKn/AVwPzpGak2y9c3bwSW8UVu08s2cKHC4wMnk0nnah/0
C3/8CEqhr809vHDLaFhcJFMYyoBO7aOgNNmtvEjWrmG5dG+UIp8tnC723Z6Att2d8de9M1saPnah
/wBAt/8AwISg3F+Bk6WwH/XwlakW7yU8w5faNxxjnvUd5JGlufNkWNW+XJfb+R9aBGaLy5E0STWL
RrI4Tf5ytgn2H0q7WFp1kmmrDCdYuNSkkvFcNcziRlXBwoA7Ad+9btABRRRQAUUUUAFFFFABRRRQ
AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFPVv+QVd/9cJP/Qa8suv9Yv8Au16nq3/I
Ku/+uEn/AKDXll1/rF/3a68P8LOPE/Ejp/Bf/IRf/r2/qtd1dadaXgcXECSb9u4kcnGcc/ifzNcL
4L/5CL/9e39Vro9a1S+sZL3y5UEcSxOpWMFkB354LAMSVH4E1liPjNsP/DOgVQihVACgYAA4ArC8
QaHa33797wWDOVWWT5f3ijp14DDs3UZ71rDzrnThhjBPLF94DPlsR1weuDXFan4e1XTra1EcsN44
IWW7YEXErE8fMxO3qeARknHHQqmldu+q7dfvaHVa5H7t/I6vTLnSLYx6Vptxa74ot628cgZgmcbi
M56nr6mnx6Jp0QcJZxDeSTxnqCD+jHj3NYXhDSPsNyZZ4yt19mBbevzqruxCZ6jAQfiTU51i8sTe
C4ka6xcPDHhVTy1WLzCfc9vyqZpRZdNuUU7WNK+0G0u7NoI444SejrGCVydxxn35qQaJYfZoIJLd
ZFgh8hC3XZxxn8AfqKy08VOZFDWD+Tux5hlXON4jJ2/7xHHpmmDxiUtzPNpsqRiPf8soZjmMyKMe
4Bz6VBepuHTLNoUha2jMcaGNVK8BTjI/HApq6VYrcPOLWPzXcOzY/iHesi28Tve6nYWyQJCJifND
SqzfcZuAOo4HzfhTh4ugDFZYNj+YYwvmgkneqY+vzA4GeKBGp/Y1h9nlgFrGIpdu9AMA7cbfywPy
q1FGsMSxxjCIMAZzxXKjxfcRebdXVqq27eSIYVkBY71LEk4647VcfxYqyW6raM/n3DQqBKoKhTgl
geh9F6mgDoaKKKACiioLm9t7Mx/aJVj8xtqluAT9aNwJ6KxdFuJdUvLrUS7i1J8m3TPBAPLY9zV6
81S0sCwuZlRhGZAp6kD0qnFp2EpK1y5Ve/t7W7sZre/SN7aVdsiyfdIqj4f+0T2j310z77tvMWMn
iNP4QB9OabdaRO0slz9qkum3l1gmC7Av9xcAY+pyfWqjFKdm7Djqcx4V8PRaLf3UN9qFncafFcK2
noZNzrz8ufcE4HvXXf2DpwO5bSMMJDKD1w5Oc4+vNVHW2ubnS2ghRIpGL8LjkAnB98iqD+K3tGml
mDzvkgWyBVER8zYAzE5B6HkY54q8S+ap7RrWW/qtPv0BU1TXLHb/AD3NqHQrJIIo5IllaMu28jBY
uctnHYnt0qzBYW1tO80MKpI6qjMP7q9B7AVijxXvkaOKxLuXWNF85c7iQPmH8I54PORyKj/4TE7b
cf2dJ5lwybF81cbWXcCT0B9vasAOmqC7s4L+DybqISR5DYPqOQaydH8SC9gDXqQW2IkdnEwKlmBO
0fQKSat6nqPkacJ7aWMI0ixtOfmWIFsFj9P/ANdDAm/smwwoFpCApBAC9DgD+Sr+QqsdAtf7Xgv1
AQwZKoigAsd3JPU/eb86o3Pic6cDH5RvtpjQTo6qJGcMfoBhTz64FQP40/0uQR2ga3hMvmN5g3Pt
TcNo9TgjB9KB+Ruro9gk6TraxiRGZ1bHQk5J/PmnSaXZSiQPbRMJAwbK9dxBb8yAfwrLl8UpBp9h
cyWrBryUR+WJFJUZwWBHB6jjrTLvxJPbXd7btbLiF2Csko3BFiDliCOvOB/9agS1NX+xtP8AK8o2
kJTAXBXtgj+TN+Zq3GixRrGgwqgKB6CufHithId2nuIQfv8AmgnG9kBx/vJ+R/Co28YtDbvNPpsi
KqEgLKrEttVwPYYcZPbB+tA7HTUVztp4lkvtYtLVIVhR0ZpFaRWfOwMMAdufvd+aRPGEGwGSDa5I
AQSgkncVIHqRjJxkc9aBHR0Vykfiy4idpry1CxzTxRQwpICyqyKxYnHJ+ccflVtPFSyT2ca2hb7V
IygrKvyKCB83o3zfd68GgDoKoy6LYTyzSS2yM0+PMJJ+bGOfrwOfaphf2pm8kXERl3bdm8Zzzxj8
D+VYup6vLDqMsMGoQRxrtSUuq/6OTjnrzwec8DIoA1f7I0/99/ocH74YkBQYYYx0q08MchjLopMb
bkyPunBGR+BNcfJ4qv47GabgzNGW8tYGcWxB/j284YZIz/Kt+e/naey8lWijkuDDIsseC42MQRzw
Mj/9VAF1rO3a2a3MQELkkqOOpyenvUUek2MLM0drEpePymwOq9MVSttRu5NJctzdBZiJhF+7BRmA
yM+3TNVtP1u4m1No7iaIQi1EhG0fK2xWJ65x8x68dMc5oGaaaHp0cQjW1TYBtAOTgc8c/U/nU91Z
W97biC5iEkYIYKeMEdDWfpWsRPY+ZeX9u5LMyPuVSyc4JAOAcA/lVnWLwWmmSSi5WBjhUcgH5ieB
zxz70MQ9NJsYzKVtY8yhQ/Gd2OmaspFHG8jogDSHc5H8RwBz+AFcx/bmoFJytxbs6BSyKm4R4dVx
nP8AECSCfTvWxb30/wBtu4ZlMoW4EcZjj4RSit83PueaYFxbSBChWJAY2ZlIHQt94/jk1G+m2clx
JO9tE0si7HZlzuFZdtqd7usjM6SK73CSLHFguULbdvPHTp+tVL7xFdW9xceWGJ2MqW/klniOxWEj
hcnGWIPbikM6F7G2kiSNoIykalEXHCqRggfhxSwWdvas7QRKhf7xUdeSf5k/nWaNTmH9lTPLGtvc
Qs825Cp4TdnJPA68YrThu4LlmWCaOQp94KwOOSP5g/lTYuhNRRRSAKKKKACo5PvVJUcn3qAI5P8A
Vt9Kp3XW2/67r/Jqtyf6tvpVS6623/Xdf5NQBOOrUtNzgnjOTWZqV1fR3cUdtCzKCHwqk+Zw2QW6
AcDr61UIuTsJuxq1DOjs6NGAcAggnHXH+FZUWqakYgZLZdxj3HZDIQp3YJOcHgdhknFLdaje2+ZT
EpjD7FcxuBg7BuK55zuOB7Vp7CV7E86NDy5du3yo9vpu4/lSPHO6MuxOQR9//wCtWat9qgd3a3Ln
AZIxGygDYeevPI6HkVYhvdQeePdAphLKGby2UsCWG4An5cAA4PrSdFrqHOjUAxg4GQODilzTct/d
H50Zb+6PzrIsdmkYBhhlVh7gGky390fnRlv7o/OgACIpyqID6hQKdTct/dH50Zb+6PzoAdRTct/d
H50Zb+6PzoAdRTct/dH50Zb+6PzoAdRTct/dH50Zb+6PzoAdRTct/dH50Zb+6PzoAdRTct/dH50Z
b+6PzoAdRTct/dH50Zb+6PzoAdRTct/dH50Zb+6PzoAdRTct/dH50Zb+6PzoAdRTct/dH50Zb+6P
zoAdRTct/dH50Zb+6PzoAdRTct/dH50Zb+6PzoAdRTct/dH50Zb+6PzoAq6t/wAgq7/64Sf+g15Z
df6xf92vUtVOdJu/+uEn/oNeW3X+sX/drrw/ws48T8SOn8F/8hF/+vb+q16EyK/3lB78ivPfBf8A
yEX/AOvb+q1ualNcvf3XktqSQqQjrGkmTwcMnGAM7R8vXnPFZYj4zXD/AMM6iud8VatajTJ7ODVb
W1vyVMZdTKY2DA5KLz2P41srE9zpghuiyySQ7ZChwQSMHBHQ1xV/4Ti8LR215Y7LqygISW2u1D5D
MBuzjk5PU561nGye/wDX3O/4eo605QjzRXr5L9TR0TUdM1DxcWs9Zv7ycWJzE6YhC7x82do+bPH0
rrNo9B+Vcd4LYXGs6pcy/LNIqsEz0Us3AHoAFFTJdeILdLaWWLegWXPyu7D51AZ1wM4UkgA5OKXP
Gp70XdMMNVVamprr/mdVtX+6Pyo2r/dH5Vy6arrkd5GxsyY7iRAzSI+1F2jO0AEjPJ56dDVu81nU
bW6ulWzaWGJsIUgds5RiOR1O4AHAwAevojc3FijQgrGqkDAwOgoEMYxiNODkfKODXMS32ui4e8eF
hHFDII7dIXwX3qoLYPzcZPA6ZxT5dc1pbJ5F09VuAIv3TQyEKGA3OWHUAkjaBkYyaBHSmNGABRSB
zyKQwxnOY0OTuOVHX1ohZngjZwA7KCwGcA49+afQAUUUUAFV72yg1C1a3uoxJE3UHsfUHsasVT1H
U4NLjSW5DiJm2l1XIX0zTV76Cdrak1tDDaQx20AVEjXCoD0FQ6hpdpqsaJeQiQI25ecEfjWf4fD3
0txrE6kG4OyBT/DEDx+Z5qzq+u2+jgfaFk+ZGZGC/KxH8OfWqs1Ky3Fdct3saKlOUUr8vGB2qO5u
4LRQZ5Aueg6k/hVDw/aSwWJuLof6Xdt50vtnov4Cll0OBZZrm1Lx3UjmQu0jMGPoQSfl9h07U4qP
NaT0KjruY0XlNKjTXk6SC88yP7PbkLhpOE+YE8g/MeOpxiuqMUZ3ZRTv+9kdfrWQ12t5d6W7ALl3
3JnlXAIx+YrMfUNXs2uJIbSee56Seb5hjj/eYG1QMEbecrk9c1dfdXLmnc6sRopJVFBOMkD06UjR
IwAZFIHOCK59dW1qWVo47ONSXVctDJtjBIG4njcCMnjGMYNRHWdfVbcNp8QaVk3OY5NsYZclSBk5
ByM9PXFYEHTCNAMBFx9KXapUrgbT1GKwdH1LUvs4OqRSMFiQFktXV2kwxbI9BjHHc+4q5qk8z6YJ
LZbhVMgEuxCJRHuwxUdc49OcdKANDyoymzy02f3ccUCJB0Reuenf1rnbrU9Us4yNOtWmtlMaxvcR
yl8MGLM38RxgDpnnJqF9a117uR47FhDE0oSIwPmYhCUBPbkdRwcigDqBFGFVRGgVTkDHSl2LknaM
nqcVgy6xqsem6fKlkJLieULMqRSbVXOD1AKnHPIxwabdX2sWd/fNFbme2Z/3WY2YphE+bjquS3A5
JB5oBanQbV/uj8qCikYKjB9q5c6rrkVyrraF45njUs8cgRF+bJCgFhu469O9XLvUNWg1KZLazD26
OCWZXYuP3YwvOB95/wDvnp1oA21ijQgqiggYGB29KBDGNuI0G3p8o4rLGo3za3d2otMWsUBZJWRh
ufjjPIIOT054PFZ/9v6uLZcaazzsm5R9nkCnCuT64+ZUABOSG6UAdKY0OMqpwcjI6Gk8mP8A55p9
7d90dfX61zMd9rljcbZIGu3nu3BPlOqLGAANvJC+uTweas22r6pLf2ET2qeRMhaaRoZE2N/cAOcE
epwD2oA3tq5ztGfXFIYYyzMY0JYYJKjkVDHfLLMIxDcKSSNzRMF4z3/D+VYmqSztqc4ibUUhTasw
iWQ7hwdyYGBjp8vJyfSgDotigk7Rlupx1pcZrjHm8QCynEcV8900Z84qQPLI5Ux7sAkjg7fX1roL
g3stxZOUkhC3BV0jfcGTY2C3HHOOPX1oA08DGMcUmxck7VyRgnHasi2W/wD7Ikgfz922YCdnxKDu
bbgY54xz+lVdPlv11Vzc/bGiFouVKtjcEU5HGM53dOc5zxigZ0CwxoMLGgHoFFK6LIu11VlPYjIr
G0m+MNhmZL6QszOoeGRmReSFJIySMfr9Kt61KY9KkKrcFmwo8jduBJ6/KCQB3xQxF4RoucKozjOB
S4/WuVH9qOlxsmv2kUKWbaVDYddu0EdCu7cB+PNbNt9sjvLxdsksTXA2tI+NiFFzt45AOeP1p2A0
cD0FG1dxbAyRgnFYVsmoRvZEvdSlXuFdZDgOMtsLHHsMH9KqX02s/abn7NBdGZ0KlEYeXGpVcMhb
Clg2739eMUh2OoKg9QKAoHQAfSscPdp/ZU8n2rCwsbiIDdzsz8wHVsitKC6W4Zwscybe8kZUHkjj
PXp/L1ptCJ6KKKQBRRRQAVHJ1qSoJiQ9ADZP9W30qpddbb/ruv8AJqZqc8kUMPluV3XEaNg9QTyK
fddbb/ruv8moAm6v/wACH8qgFydoLy2sZMZl2u5BCDq30HrU4++P94fyrHm0C61DNyl6iB4vKWMx
AjYUKkFuvVifwFAGvGs8yb42gZfUE0SQzbR5n2bGeNxPXrXP3eiaoL23hhuJXDb8zBnVYVO/jrg/
eXj2GPa/J4bdrOKDzVkEN4txEJGc7RtwRnOepY/jQBoxrPNGskbW7o4DKysSCD0NO8m6/wCmP5ms
OLwrd232NYr9/Jt3R2iEjKGIVQTnnupOOnzGpLvR9TbXmngn/dvl1YyOACDGVRhnGPlYZA7n8QDY
8i5/6Y/mabEJp4xJE9u6HoysSDWKPDeqmXzJNRVv3HllAzhXO4MQec44Iz1waYvhO9jsUhjvgrh4
ySrOAqrnhefU59+5oA3UEzsVRrdiBngnp/kGneRc/wDTH8zWLb+Gbq0ijiiuI/IjcHyN7hHG5zkn
OQfmU+mVq1qOg3V3eXFzBfPC8g2rhmwq7CMYzjlsHPWgZekE0W3zHt13sFXLEZJ6CneTc/8ATD8z
WHJ4XvpXtz9tRBESykM7GE/NwmTz94cn+7+U+k+H7uxki+0XAkjEDROGldySTnjOMdTQI1ViuGUM
pgIIyCCeaYnmySFEktmcAMQGJIByAf0P5Vm6R4dutNuLQtcJ5NvEse1GfoFI2gE4wT83rnjpUFr4
QmtcGC7EEiDbG8Zbhd0hJwTgk7x+VAzc8i5/6Y/mabsnEmzMG7G7GT0rMTw5dHRLaykvJA8TOzOJ
nO4lWA54PDENj2pknhu9CMkV7uizkRSSSbW+6SCQc9Qx/H0oEa0azTRLJE1u6ONysrEgj1FCLNIz
hGt2KNtYBj8pxnB/AisyXw7eGLS0iv2jFnb+SwRioLYA3gd+h4Pr1rOfw/qNnJbLCxZpLgOwheTb
EMx5bcW5OFPBz14o6gdN5Fz/ANMfzNHkXP8A0x/M1k6V4fvrC6tpJrwzCJnMjPKzF9w6heACTz3r
o6AKXkXP/TH8zR5Fz/0x/M1dooApeRc/9MfzNHkXP/TH8zV2igCl5Fz/ANMfzNHkXP8A0x/M1doo
ApeRc/8ATH8zR5Fz/wBMfzNXaKAKXkXP/TH8zR5Fz/0x/M1dooApeRc/9MfzNHkXP/TH8zV2igCl
5Fz/ANMfzNHkXP8A0x/M1dooApeRc/8ATH8zSiG4By/lbR1wTmrlNf7jfSgDI1T/AJBV5/1xk/8A
Qa8tuv8AWL/u16lqn/IKvP8ArjJ/6DXlt1/rF/3a68P8LOPE/Ejp/Bf/ACEX/wCvb+q16HXnngv/
AJCL/wDXt/Va6G+0qe+n1JvsXls6qsTh1Cy4IIYkHOfqOAPesq/xm2H+A6OsXxIdPv8ATptJutUF
jJdAKGjkUSDkHjPr0/GteXeYnERUSbTtLDjPbNeU61pl/a6jJHeh3eRuJjnEvT5uOpJOAtc1Sp7N
c1rmGNxMsPBSUOY9EsfDOlabqZ1CztBFdGHyC6u3KZzjGcdR161qVgeFLPVrGy8rUWUw4zGHfdIu
ex4xjrxk49arRWes6eJ10+2xG7vt3NH5hJwQ7HuBzz9455HFaM6qT5oJ2t5HU0VyU+l68n2q8hle
S+lhWOMlo8RfvHJ2jAGMbOp5564qzcR+ImRvKdlk88FiojZfLwcbASDnO3duPrikWdJRXOyadqV/
ZQxXjSFo79ZSSyDfGDkZABAGe3J461EYPEqxhVnYy/Zx85MewOVOeMZ3bun8OKAOnorAVNYso72S
a5eaNYJjGWCEhgT5ZwAMkr196k0mfVUsFa6t5J2f5lMkkauBgcHHHXJHtjNAG3RTUJZFLLtYjkZz
inUAFMliSaNo5UV0YYZWGQRT6oatqEmmWy3C2zTxK373YfmVfXHemk27ITdiwk9uk4s42QSKm4Rr
2XpT5oIrhAk8SSKCGw6gjI6Gsnw7bzNDLqN4uLm9bfg/wJ/Cv5c0/XdYn0lA0do8yOpVXTnbJ2BH
oarl96yFzaXZpRXUM8ssUUis8JAkA/hJqtNq1tFK0Mb+fOhw0URDMp9/SmaHp7afpqLMd1zIfMmb
1c9fy6VJNpVrIrmOGOGVmMgljUKwc/xZHU/zpx5FL3tio67mELdY5Yxd2d7M8l2Jo2eYIQ2/PRcD
Cj8wOc5rqawTfrJd6a90ypIkrQyA8DzMFRjPqen1qjJp2twG4axiijnbh7nCM8uZM5Uk/wB3jDYA
xxV11qrlzjZnW0VziweIZJWV53jVnUM48vGzI+4MHB25znPPSojbeJgtuv2okFkaZgsZYfL8wA4G
3P4896wIOoorA0eHWLC3AuhNchIkjVJJUJ3ANuYtjnJ2gex+tXNThub3TAFg+YSBnty4/eoG5XPT
kev0NAGlS1zV3ba2qH+zB9kgzGEgVYyUXDb8DIGc7e+MZxUD2viWW7kn8xkKNL5Cb02DKELuH8S5
A9+aAOsornpU18abp6wsxuRKDcO4jB2Z6EAkcjuDnpx6LqUGvme7ksJxtbKxRtswo2pgjjO7dv6n
HSgFqdBRXP2sfiETwLNKjQAqJGdUDkEAk4GRkbccE5357Ul0PEEc90bZWkQu4iBaMYBX5Tj0B9Tk
+lAHQ0Vyc+l66Jbi9SV5LxoTFF80eI8yk/KMD+EL1PNTXEfiNreQRyMs5kTLJ5ZXy8c7ASPmzjO4
464oA6aiufn0zU/7amvLaYr5oiTJK4CqrkjGCQC5TP41Ppj6vBbYvIHndjnLyRhl4XP3eMZ3Eew5
oA2aTNJGzNGrOmxiASuc4Ppmud1PTbi71KaX+zfMjXauAyAXKcEhsnOc9ARjg880AdHmlrin8Pao
IQpj3Ov+uZXQ/aTzszuyMLxnPbpWrqWnajPPbyPHDcvGPlaP92IiGU55J6gFcj16YzQBv0tYVjps
/wDY81vJAkCTLIXtiAMM3ZSrYC/r3qOy03UrfUkuJ0hkhSx8hFWQhgQF+UjpyQ3P0oA6CisbSku7
Cx2LpjKzs0jRiRFVWOTtUAkAcD881a1mKW40uSKK0W5aTCmNtvAJ5OGIBx1xmhgaFFcoNBumSdfs
5U4XDvKC0pDqVJweqqCOfXjitm1sZ7e8vHjMaRT3AkO4Fiy7FBxyNpyD6/SmBpUVg2ujz272LRoi
NbvcYJYsFVyxXjPPUe9VL/R9VuLq5aFYPMlQrJOzFRIhVRsABLLggn2z6k0hnU0ViiwuY/7Kn8lX
ntIGWRVk4zsxgZ9SOtadvLPIzia3MIH3SXDbuT6ewB/GmxE9FFFIAooooAKrz/fqxVef79AGZq3+
otv+vqL/ANCqe6623/Xdf5NUGrf6i2/6+ov/AEKp7rrbf9d1/k1AEw++P94fyqaw/wCPGL/dqEff
H+8P5VNYf8eMX+7QBYooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA
CiiigAooooAKKKKACiiigAooooAKa/3G+lOpr/cb6UAZGqf8gq8/64yf+g15bdf6xf8Adr1LVP8A
kFXn/XGT/wBBry26/wBYv+7XXh/hZx4n4kdP4L/5CL/9e39VruZdUsYGlWa7hRoceYGcDbnpmuG8
F/8AIRf/AK9v6rXT3umalc3Fy6taFZMRruZgfK/iTgcEnqf5VlX+M2w/8M3AQQCOQaoaxe2VjBDL
fxs6iZBGFjMhDk4U4Hv37VdRdsSpgLgYwvQfSuU06ysJPM03Srq9vWtJGinlubiV0jcHJDHI3EZ6
D25FRCKb3sam9p2qNeXd1aT2z29xbbdwLblYMMgq3Gffjg1oVm6ZoFhpM0k9vCPtUyhZZzy7gdMn
0rNTwxdId6ajKs3Xf5jnBJfcQCcdGQf8BqZWT0GjpKK5238P38cKp9v8kMGDrG7sFOPkKljn72Sc
9c4qCbQtRTR7CwjmaSRZmMsjTvjBRsEkYP3iCB64pAdO8ipt3MBuO0Z7ml3DdtyN2M471zjeHtRL
zldRILtkSb33OOcbhnAxnAx+NTab4dfT9XjuzKJVSJoxvdyyg7TwSTn5gx59aEBvUUUUAFFFFABR
RVDVpb+C2WbTo0mdGy8TdXX2PrTSu7CbsSpfwyajJZJuaWNA7kD5Vz0GfWrVZXh+wls7Jprvm8un
MsxPYnov4Cm67NqsCBtMhWZXUoy/xIx6MPaq5U5WQr6XZdtL+G9luEh3HyH2M2PlJ9j3xVOXXoWu
XtrRTJOshiJkBRd46gEj5j9PzqzpGnrpmmw2wO5lGXb+8x6n86sXEEd1A0Uq7kYYP+I96cXBS1V0
VHzOfFnLZSwxtY2LGe5En7zdIwbduLbmJORzj0wK3or62muZLeKeN5ovvorZK/WsBdVjF1YGaTzH
guGtZHUbssSUU8Z9RnPSkufDeoyQS28OoeXAPuKjspkBk3nd6HkjIzmrrqzRUklsdPRXNr4bvHlf
zr1jGzqXxLJukUEHaeQBgDAIxkHmom8LXu23UajKyI6PKnnOPMYLhm3cnrzjpWBJ1CsGUMpBB5BH
emTXEVuqtPIkaswQF2wCxOAPqTWJpGhXejwhYZYCyxJEqsXKKFDcgZ4JJBP4+1XNT0uTVtPjt7l4
wRMsjFQcYDZGPfGPxoGX0uIZZpYo5UaSLAkQMCUyMjI7ZFSVyzeFr3zGlW9QzTMrzMNybnC43/Ke
o4wOlTXPh6/meEjUZCsU+4IJGTMY+6CeckEntz+FAjo6KxJdMvl1XUL0XJaKW2McUKEghsDBx0zk
Hn39qoWXh3Uhb2jS3exlIZ4/NkPln5MsCTy3ytkHj5j+IB06yo0YkDjYejZ4pkl3BDKIpJo0kKlg
rMAcDqa5qfwldXFsyzXvnSNgN5jybWACYGM8fMpOevNX9Q0ae9uZtjiMOIiHPOAu5XXHXlWPPvQB
sRXEU4zDKkgwD8rZ4IyPzFOd1jXc7BVHc1zR8M30f2dbe+WNYpncldynbwqLx1wgA/Wnp4auoSrQ
38iuAqkmRzlQqZHJ7srHP+1QB0lFcdqOg6jaafstZ57iSTA2rJJ/rNpBk3buOcH04ran0u7eOx8q
VFkt5S7bncqw57ZyfxPFAGvVSbVLK2eVJ7qGNolDOGcAqD0Jp9uLveftJgK448sEHP41mX2mX91q
DXCtakRFTbby3y9Mgj3Pf2FAGg2q2K+bm7g/dbd/zj5c9M/WpZry3t5Io5po43lOI1ZgCx9q5pvC
NyIYo0uYiLbPkn51J3ZyWIPUE8Y9Oa0LzRLqV42jvPMOMO1wuSMMrDbtA7r39etAGnHf2sto11Hc
RNbrndJvG0Y65PanLdQM6os0ZZk8xVDDJT+99OetZ9ppU62UiXUq+bKriRUO6N2b+I5Gc+3TFRWm
hXNnfi6F4shFr5AjaMYUgLjB67cqTj3oA1ba6gvIRLbSpLGSRuQ5GR1pbi5htIGmuJFiiX7zscAV
nWVpqdrbFd1n5rEvIx3tuc557e3HarWpQ3U9i0dm8aStgEuSBt/iwR0OO9DAX+1LEM6m8gBjKhv3
g4Lfd/PtU8dxDMZBFKjmJtjhWB2t1wfQ81hL4cmMcsbPAkYGIVVSduXVznPptwK04tOaO7uJhMyL
LMJdsYA3YQKQ2R6jPGKYE0d/aTNGsVzC5l3eWFcHfjrj1xQ1/apNJC9xEskSeY6lwCq+p9BVGLRW
jNsRKqmF523IuCBIWIx9M/pVO98N3V3JKov9kTZbeUDO5KqpDjoV+UHj+lIZuC7tzJEgnj3zLujX
cMuOuQO4qasv+zJ0j08pLE09nEU3MmA52bR06DPOKu24utz/AGkwlf4fLBB6nrn2x+tNiJ6KKKQB
RRRQAVXn+/Viq8/36AMzVv8AUW3/AF9Rf+hVPddbb/ruv8mqDVv9Rbf9fUX/AKFU911tv+u6/wAm
oAmH3x/vD+VTWH/HjF/u1CPvj/eH8qmsP+PGL/doAsUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU
UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNf7jfSnU1/uN9KAMjVP+QVef
9cZP/Qa8tuv9Yv8Au16lqn/IKvP+uMn/AKDXlt1/rF/3a68P8LOPE/Ejp/Bf/IRf/r2/qtdpc6zb
2kk6Sx3GYUEjbYicr3YeoHeuL8F/8hF/+vb+q11l1oT3TXfmXhKXJHDQoxQDsCR26j0PNZV/jNcP
/DNdWDKGHIIyKwLvWbme1ubjw+NOkhtpSs89xIwT5f8AWY2A8gd/Wt5EEcaoCSFAGScmuZjsNWXQ
JYbfT7O2ma/kkeAyfJLC0hJyVHUg9Pz4qI8vU2NzSdRj1bS7e+hwY513oR0YdiO+D15qC11+zu3K
R+apB4MiFQwyRuBPUZGKdYakZ72aybTby1MCKweRF8pgeyspIJGOR2qmnhaAoqXFxJOkb5RWVQFX
JJXgc5J6+wqXuPoadzqNtaRzSTyqiQrudiRjvx9eOlEmpWsVpJcNKPLiUO+OSoIyMjrWRP4Qt54d
pupvMKBHkZVYv98FiCMZO889sCpbfwtbWyX6JI+28+8xA3jv17/0pAaqXkDkL5qK+C2xmAbA749K
U3UCrGxniCyHCEuMN9PWsSTwbYyxSo0kuZMguAobBVlxnHT5s/hU7+GLWWytrdyMW8ciIVQDG8gk
gc4IxQBqvdQRjLzxKPUuB/npTo5Y5l3ROrrkjKnIzWEfCFtJIxmnklT5giMi4QESe3P+tY5+lX7X
SFsbeSK0neESSByVVePlC4xjH8OfrQBo0VHBG8Ue2SZpWyTuYAH6cVJQAUUVQ1a3vZrYNp1x5VxG
dyhvuv7GmldiYsGpC51W4tIo9yW6jzJc8Bj/AA4+lXqztD006XpyxSNvncmSZ/7znr/hUOu2WpXS
A6ZdCMspjkR/ukH+Ie4qrJyshXaV2WdN1Iakbho48QRSeWkmf9ZjqfzqrdapdiZ41tZbWFZPLFzM
oZW9wAThfc/lV+wso9OsYbWEfJEoUH19TU7osiMjqGVhgg9CKcZRjK9roqOm5hm2u7Ce1ggu1UTy
7mWOFFXGdzHGOp5yffNaMOq28zy7d6xRZzO67Yzg4OGPBweKxba5nd7N7e2nuI7W5a38wLjKbim7
5scL3Iz0OM1LdeDra7DrJcSFP+WalR8g378Huwz2PTNVWtdbFysbjXlum8NcRDy8F8uPlz0z6Ufb
Lbbu+0Q7d2zO8Y3en1rHj8JWiyhnkLosiyKhjXGQwYg8ZIyBjPTtUTeC7E/ZtrHEBTCsilW2rtyR
6kY5rEg27S/tb6JJLW4imV1DqUYHK+tJf30Wn24llWRgzqirGu5mYnAAFULHw+unI32a6kRyix7x
Gmdqhgo6e+fqPrVm9017yzSE3ciyxyrKsuxSQQ2QMYxjtQMktdStryLzIn+Tbuy42n34PIweDSHV
bRZooXlVZJUMgUnkKBkk+gqinhe1SZZfNlLblZ84/eYySDx0JOT9BVSTwTayRmNrmby/L2AbVznC
jJOMkfKOOnWgDoftEP7v97H+9+58w+f6etV01S0cy5lCLE5Rmc7RuBwRk1Sfw3DIdMzMyrp5DIiK
ApIIOcdun5GmTeFbSe6knld33uzlWCkZO/2/2z+QoEa73MSiXDhmiGXVSCR6cULcwv5myaNvL+/h
gdv19Kx7bwpa2q36rK5F7H5bsQN44wef6VLB4ct7aO5WCWSNriJo2dQAeWZt3TrlzQBpG7t1jSRp
4gj8IxcYb6HvSvdQRKWkmjUDuzge39Kx/wDhFLQ6ZbWTuzJbrKqnavBfOSBjjGeKb/wiVs85ead5
UBJSNkUhc7z6c8yE/lQM1DqdmLmOD7RGXlDbMMMEggEZ9ckcVMtzAzhFmjLFioAYZyOo+orD/wCE
PtRLE8czoqYBXYuCAIxxxwT5Y5HPJqbSPC9ro9yJoWLsocLuUZwxXqe5+Uc0CNus+71m3sp2hmSf
ftygWInzOQML6kZFT29tPE4aS8kmGMbWVQM8c8D2P51SudEkuLyW4+3SIzFTHiNSYiPQnqOvHvQA
HxLp+CRI5GQEOwgSZ/uk9cd/Srd3qdvZTwxTF90vTapIXkDJ9BkgfjWS/hC2aNY1uJQkeRCGVW8s
N9/qOc5PJ6dqtTeHoHKeRNNAB98A7t/II5bOMFQeKALUWqQS2M13iVUhLCRWjO9SvUbetLFqltNc
JBG7GR4PtAXafucc/XnpUNpoyW9t5csrSy7GTzcbSQ3XIHBPfNMt9Agtbr7RDPcrKYDDzISvRRu2
ngEbR7UAXbK9jvoWkiDrtYoyyKVZSOxFOurgWlu8zJI4QZKxruY/hVK10q4tbVYV1GQYByyxIMk5
5PHXnP4VY1Gye+sjbrcNCWIywUHcB1BB7HvQwK3/AAkVhtdt0pRduGETENkgccc4JAPpVy3vIrl7
hIy263fy3ypHOAeM9eCOazx4ejIlElzIwcYUBVATLBmxx3Kj6VdGmw/aZJ23MzyiUfMQFYKF7deB
3pgMg1i0uXt0jMmbjeI90TD7hIbORx06Gkn1qzt5545XdfIjMjtsO3gAkA9yAQce9IujwgRBndlj
eVsZxnzM5H/j1VLjwva3DndNcLCOUjSQrsbaF3bhyeAOCcUhmgNSt2ltYwX3XSF4vkOCAM8noOO1
W6of2UohtEjnlVrSMpG5wx5Xbk56nvViCGWJnMly8wPQMqjbyfQe4H4U2InooopAFFFFABVef79W
Krz/AH6AMzVv9Rbf9fUX/oVT3XW2/wCu6/yaoNW/1Ft/19Rf+hVPddbb/ruv8moAmH3x/vD+VTWH
/HjF/u1CPvj/AHh/KprD/jxi/wB2gCxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF
FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU1/uN9KdTX+430oAyNU/5BV5/wBcZP8A0GvL
br/WL/u16lqn/IKvP+uMn/oNeW3X+sX/AHa68P8ACzjxPxI6fwX/AMhF/wDr2/qtdbf68NPku1lt
mYQRCRNjgmT/AGcdjwfwBPauS8F/8hF/+vb+q12U2gafcm4+0wmdLglnjlYuobGMgHhTjjIrKv8A
GbYf4DQRt6Kw6EZrnNTt9R1K+im028S1hsbo+cZSxEi7fnGBj1GMngg10aIscaogCqoAAHYViW+n
6k2kyRXYtfPF48yxozGOSMyFgrEjOcH6ZA61MFF6M2UnHVGnp073OnwzSJtZ1zj1HY+2Rzj3rMg8
TxthrqD7NG+TG7PkMoYqeg4PHT361csb+9nv57e60x7ZI0Vln80OkhPYd8j6UkOgWEH3YmbD7xvk
ZtvJOBk8DJPHTmpl8TBbDLzxFY2SXDPKG8lc7UyWY4Y4xj/ZPPTr6Uh8R2LWt1LBIJpbVA0sKH5l
z29KV/DWmvAkPkuqogjBWVgdo3cZBzzvbPrmpItCsYY7mOOJhFc/6xN52/gM8Z9qkCNfEemglZbq
NHVS7ddoAyfvYx0BOPY1I2v6alvbzm6XyrnPlMFJ3YOD24xnnPSmt4d014Xie23RuSWUu3J2lfX0
Y1K2j2kkEcMiO6xo0alnOdrYzz+AoAiHiLSmYgXsRxOLc4zjzD0XNXbS7hvrZLi2ffDIMq2CMj15
rP8A+EZ0zch8l8JIZVUSNgEnJwM9MjOKt/2bbiCCFRIscChUCyMMAY64PPQdaALdFMijWGJI03bU
AA3MSfzPJp9ABRRVHVtN/tK2CpO8E0Z3Ryofun6dxTW+omRWOoyX+q3aQhfsdviPfjlpO+D6CtJm
CKWYgADJJ7CqmladHpWnxWsZ3beWY9WY8k1V1vQ/7WVTHcyW0oBRmXkMh6giq91y8hapeZJo1/Lq
cc9yyqts0hW345KjjJ+pqvevqm+Vp1SKzVzhraQmTZ/ebIH5Dp71q29vHa28cEK7Y41CqPQCpD05
6U4zUZXSKjpuYM1ki3lisN1cv57hmYzH5lX5vy4/Kph4mtEMsl00dvbKMpI8g3ON23OzqAT0qjbr
eGS38mOKJbW6ZUSeUK3kliucDPY/KOM8dK0pfDenTFy8T/MdygSNiM7txKjPy5IzxV13qtblSaew
5vEWlrvzdqQpAyqsdxOAAuB83JA4z1pp8T6QIlkN9GFdwi5BG4kZGBjkY79Kkj0Kxjm80RuWDhxu
kYhWBzkDOBkjJ9aafD2nboXWFleHaI2WRgQFGAOvTFYEkmma1Z6sim1Z9xjWUo8ZUqrdM5Hsafqd
81hbo8cPnSSSpEibtuSxxyajh0OzgiMcSyqCAOJnBwAQBnPQBj+npUlxplvc2gtpPN2K4kVhKwYM
DkENnPWgZWtPEFrcK3mkQSIuWjY5ZSDgjjjr6ZzUT+KdPikiWSVQrRmR5BkpGAAeuOTyOBzyOOat
LoWno8bLBgxsrr8x6qCAevPU/WoG8L6Wy7TA+zZsC+a20cAZAz1+Uc9eBQBa/tiw22bfaU23pxbn
Bw59P/11VPiWyiknW6fyRFIY+cszEE8gAHj5T+Rqd9Es5ZLSSRHZ7T/VMZG9QeeeeQOtB0OwNw05
h/eMWYneep3Z7/7TfnQIF13TXa6CXkTG0TzJsHOxcZz/APqpi+ItLZ4kF4nmShiiFSGO3OeMZHQ9
adDoNhBHcxRxMsVyu2RN5wRjHrwaZN4d06eZ5WhYPIGDlZGG4N1B59/woAltdbsL5Wa1uBKqxCVi
qnAXnnp7HjrxTW1/TVtILo3SmG4z5TBSd2OvQdsHPpSw6HY29pNbRxMI502SZdiWHPfP+0agm8N2
kqWcKtIlvbFz5au2ZN3UFs5xyc+tAEkniHTkLf6THtjYh2OQAAGJI4+b7p6ehp1nrtlqF6bW2eR3
EfmEmNgoG4rjJHByOlMbw5prhw0DFXJO0yNhc7sgDPA+ZuB61Zg0u2t7x7qFGWVwQxDnDZOeR060
AW6yr7WZLO9NstoZXZQYtsgG4k4wf7vfB74NatZ82iWk800rmfdMQzbZmADDGCMHg8dqAM1vF8Ii
WQWz7Jv9QS338ffJwCVx+NX7nW4oZ4khUXCsf3jxuCIwWCj6nLDikPhzTiGAidQemyVhtHcLg8A5
Ocdc81NcaNZXJTfDtCAgCNigI46gdeQDz3AoAig1kS2M0rQgTxb/ANwsikvt6lTxke9La6zHd3kd
vHE+5rYTlsjCk4+T64YGp7bTLe2thAod0ClAZHLMFPbJ5xUaaJp8U3nR2saTGIwmRRhipAHJ6noO
evFAEmm3xv7ZpGi8plkaMgNuBIOMg9xT765azspZ0jWQxru2s4QY+p6VXi0W2igWJXuSirtXNw+Q
ORjr71PeWMV9bCCYyBQwYFHKkEHI5HNAGYfEuEd/sU2wbSmWUEjcFbI7bSw+tX4NSSSe4hkXyWim
8pQ7j94doYY59D060xdEsl83Mbt5uN26Rj0IPHPGSATjqatLaQLLJKIwXkcOxPPzAAZHpwBTAoQa
4JWtRJbPCs5lDM7riMxkg559j7VHceI4YJZv3ReFFby5EcHzXChtqj3DDB+tX1062Xy8Rf6tnZck
nl87vzyagm0DTbmV3ntI5Q4wUflBxjIXoDgAZHPFIY5dT3TWCeQ+28QuH3DCYXdg96v1UOmWphgi
EZVIEMcQRiuwFdvGPapILSO2Z2jMhL9d0jN3J7njqf8AIpsRPRRRSAKKKKACq8/36sVXn+/QBmat
/qLb/r6i/wDQqnuutt/13X+TVBq3+otv+vqL/wBCqe6623/Xdf5NQBMPvj/eH8qmsP8Ajxi/3ahH
3x/vD+VTWH/HjF/u0AWKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii
gAooooAKKKKACiiigAooooAKKKKACmv9xvpTqa/3G+lAGRqn/IKvP+uMn/oNeW3X+sX/AHa9S1T/
AJBV5/1xk/8AQa8tuv8AWL/u114f4WceJ+JHT+C/+Qi//Xt/Va6nUNUv4JLw2kcM0VuqsWCn93/e
BywDHbzgEY965bwX/wAhF/8Ar2/qtdy+lWEjyO9lbM0pBkJiUlyOmeOayr/Ga4f+GWI5BLCkiHId
QwPTOa5LWdVlF3ZXLLMJrOUkJHKY4ZFZSuXIzlVPOcHoTXX1lR6YDrt1PJdRyQvCEWzEajy8/fYk
cndgdfSijOnF+/G6LnGbtyuwvh+C5jtJZ7u++1vcytMNrBo4geiIe6jHes+TxgIbJ3aylkmRSfkK
hC2CQuSc52gnpitfSLK50+y8i6vDdlXPluYwm1P4V464HGepqZrC0ZCjWsBVuoMYweMfyJFZyabb
RpHRamYPFNs1xJClpeu6StF8sQwzKGLAHPONpHH4ZpieLrJ5CiQXLMEViVQFQzHCoWzgMc+uPetV
dNsldnW0twz8MwjGTxjn8OKb/ZVhjH2K2xs8v/VL9z+706e1SBntr032W9l+xmFra5jgxIwO7cUy
flPbfUI8Y2aQGSSG5KhQQ6xjEjYQ7VG4nP7xevHvxW0ljaxqypbQqG27gEHO37ufpgYpDp9m0Zja
1gKEEFTGMEEAHj6AfkKBkGnavFqMssaQzQtGqsVmUKxDDP3c59s4xnNX6gt7K2tSxt7eKIsAGKIF
yB0zj0qegQUUUUAFRyTxRMiySKhc4UMcZPtUlVNS0231W0NvcqSucqynDKfUGmrX1E/IpaTezapq
F3dK5FjGfJhXs5H3m/pWjPeW9tu86VEKoZCCedo6nFFlZxWFnFbW67Y41wP8aratolprKIt0rZQ8
Mhwcdx9DVXi5eQtUvMi0Ge5vbaS+uGYJcPuhjP8AAnQfn1qK90++d5ZprgXcAcstsI9mE9AQTub3
P6VsIixoqIAqqMADsKbNPFbpvmkVF9WOKcZtTvFFR0MN7KwlutN+zQoIpX83OOu0bh+oph8VLb7p
bpSY3yIYYYWaQkSbMFs4Jz1GBjPeqsLhpI2fUbe3Md5vjRFaVdjSY25OBlgfT5Se+K6N9MsZGlZ7
O3YzY80mJTvx0zxzWmIvdLX5lzabM4+KLbOFtbtiziOMBVBkbcFIAJ4wSAc4qMeMLNhCBa3pkmK+
XGIwWKldwbg9Mfj7Vrpp9pHIzpawK7bSWEYBO3pz7dqRtOs3Ch7SBghBUGMcEdMfSucgpaRr6anE
pkge2fyUlfeylRuBIAIPPAJrSknjjt3mZgY0UsSOeB1qIadZqmwWluEJztEYx39vc/mamWFI4jHG
ionPCgAc9eKGBhjxfZCRY3t7tZDksvlhtihVbcdpPGHWnN4stlC5tLvcRuKhUJUHZgn5sc+YvT19
qtWHh+w0+EIkCSESmUPIi5DHAyMAAcAdAOlWo9Ps4UCR2kCIM4VYwAOQf5gH8BQBi3HjGBAVt7K7
mmUKXTaFCEvt2ls4B4PtxV+11+3urhYVhnSR3KoGC/OFLBmGD0BU5/D1q0+mWUrbpLO3YlSuTEp4
JyR09SaE0+CO8W4VcMiFEUABUBOWIGOpIGfpQBQm8TWsEfmvBceTmXEgCkERgl2xnOBgjpk+lVbn
xjBFGghsrp53QOInAQj5guCSeDg5HqK2xYWgd3FrAGkJLnyxliRg59cioxpGnKMCwtQNmzHkr930
6dPagCkPEUdxa3UtpDL/AKPMsRaVCquS+w7T3wc1WPjGDfGfsdysJR5ZHfaCqBCwYAEk5weOtbaW
NrGZCltCplIZ8IBuI6E+tIbC0bbm1gO37uYxxwR/IkfjQMy4/FNvJg/ZLxBlAxkQIE3Egbsnj7p5
6cj1pIfFdvdwM9paXcjbXdVZAm5FA+YFiOOQPX2rTXTLFI1jWztwikMqiJcAjoenbJoGmWKkEWdu
CHMgxEv3j1bp196BCWGoJeWNvO4ELzRq5iZwSpIBxx9R+dUNQ1S7gvmgtjbMhKpvdWxE5xgMc85G
TgYxx61opp1nFt8u0t12427YwMYxjHHsPyFJJpljLJLJJZ27vKMSM0SkuOOvHPQflQwOam8aSQWD
XMiWyGWMtAjEjaVOG3n9R09K3ZtTYz2gtgrRSzmGQyKykHYzDbkcjjr0q4tnbo0rLbxAzACQhB8+
Bjn14qRkVypZVJU5XI6H1H50AZUGrTS6W7skYvAspChX8r5GK/ex7fWorDXJ7rUPJlWFITbiQNyP
m2qxGc/7XTsMHPPGysSKhRUUIc5UDg561GLG1WRnFtCHZPLZggyV/un29qBlbTb957TzLxoVYsdj
L8gdOzAE5ANS6lcva2EksLxrIMbN6lgT2GAQST0oTSrCOMIllbKg42iJcfy9z+dS3FrBdw+TcwRy
xcHZIoYcdODQIwW8QXypKzQ2wK4+Qk5TDqjgnufm46dK07fUXN3dQ3CqClwIovLVmyCisN3HHX6V
ZSxtY9+y2hXeAHxGBux0z647VMqKrMyqAWOWIHU9OaYGNb6xdM1n9ojgCStOsvl7iQYycbR34X61
Wv8AxSbJ5pCIRBhkhDhlbzAisC2eind6cY966AQRKVKxoCpJXCjgnqR9aT7NB57zeTH5rrtZ9o3M
PQn0pDM+PVZXfS3/AHHkXkRd2ycg7N3HbH1rSSRJCQjqxHXBzimvbwyIEeKNlUFQCoIAIwR+XFEV
tDAWMMMcZbqUUDPU/wBT+dNiJaKKKQBRRRQAVXn+/Viq8/36AMzVv9Rbf9fUX/oVT3XW2/67r/Jq
g1b/AFFt/wBfUX/oVT3XW2/67r/JqAJh98f7w/lU1h/x4xf7tQj74/3h/KprD/jxi/3aALFFFFAB
RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF
FFABTX+430p1Nf7jfSgDI1T/AJBV5/1xk/8AQa8tuv8AWL/u16lqn/IKvP8ArjJ/6DXlt1/rF/3a
68P8LOPE/Ejp/Bf/ACEX/wCvb+q1tatrNzFdXa2V4NkbKkiyYHlHqSPlJA6DJB5bisXwX/yEX/69
v6rXolZV/jNcP/DI4HMtvG7KyFlBKt1HHQ+9c/dQrH4saSzCwtdIkF3dKo3KVBZFGeMkH09K6Sue
nOjeGtMuor69dkd3uXE0peUn73ygfNxgYx0wKmnvsdC06XLek2tna6jqIttRnupyyefDLcmXyDt+
UBT93I596yJvEmqQ2EpS1jZ0U4lk3D5tpblQvQAY69cVv6Vb2S2q3VjGMXSrI0pHzy8cFieScHv0
q9UPdiRzSeKLqW7mgjsI/wB3IUDNPjICs248cA7eCeMEVGvi+dnI+wrsECy+YZNoyTjOCMlBzlgO
1dTRSA5xdYv5bO/cmAPDcwpH5GWzG2zJ5HOQx5/wqA+K7yK0aY6azII/lJkO4sBGSW+UAD5+v+ya
6qigZz0XiGe5stQcQxxy28KyKEfzByuckjj8M9BU1prri6khvIfLgXeI58li+xtpJAXAz1GK2mUM
pVgCCMEHvQqqihVAVVGAAOAKBEcFxHcx74W3KCVzgjkVLRRQAUUUUAFUNR1m00slbqTYxjaRQR97
HYH1q55sfm+VvXzMbtmeceuKivLC21CNY7uBJUVtwDDoaatfUTvbQo+HopzZve3e4T3jeaVJ+4v8
I/Kkn0UiaW6huJpZy5cJO+5Mf3AP4R9PxzWoksbuyI6lkwGUHlfr6VFc30Fp/rGJbGQijLflVxlL
mvEcdLWM15Iru60uRIwiOzNjGCGAPB+hFZcniS7s2uJGjluJl4aElUjgPmbRnjI4wckkHnpTo44h
LG1y+oGVrwSxtFEIhy+QuMkkY+96jJrrKuurNIub12ObXxNdSytFDYxly6oqmU/JkgZfC4AOcjGc
gVG3iu8VbcNpiq87JgmbCqrLkAkgfN1GPauoorAg5/R/EE1xbhtSSKMLEhaSPcQzkMSAMcYCnPvW
z9qRrR7iENKqhiAo5YjPA/EVPSEZBB6GhgcrF4xnkeJFsEl3OylopvlOFVtq7gMt8+MexqVPFF5L
FG0OnxSZGWZZW243IMA7eSC/P+6a37SygsYjHbR7FLFjySST3JPJqegDkrvxXqC7oobGKKREDPJL
Idv+s2ttGMlQAeccZFadlrlxc3cUEloqGdn8tg5I2IxVieODwuB33CtqohbxC5NxsHmldhb264oA
wpfEtwnmGOxWTy2l3Rq58xRGpOCMdWxwPQ9aoz+ML1okW3tIFlMIlZ2kLInzgH7o5G3PI6GuwooA
56PXrq8tr4x2/wBne3nSNfmDsw37SSvbIGRnsaqt4o1FXhdrCNYzG0jRhmZnHlllVTtA3ZU8V1dF
AzmYfFVzJFHI9nCkZaNGYTb8ly33cD5vujgc8+1Nh8VXd1EQllFBKzSKnmy55UcKQASH5+6cdDXU
UUCMrTNaiubG1a5lQXMqJvEatt3ELwOPVhVDVNVePUp4odQaGKPas/yqTFnB3KMZxg8k5HzD0rpK
KGBxcmvaullOyrcPcmMmRI7cN9lI6HGMncvPOfyrobi5umuLEossCPcGORHVTvXYxDZBOBkD0Nad
FAGNbXN8+jyBjKZws2LnYgAKswX5fXAHbFVdP1W7fVHS5mbyRaiRl2D5TsUlsYz1Lc5wegAxz0dF
AGJpWswmw8y5vfNDMzIxGWCc4DbRjOAat61eLaaVJKZ3hJwqOmM5J45YEAe5rQooA5QanqTLcbLs
vJGFLhIgVX51A28dHUk9/bFbNrcXQvLyKRZJ0FwFRgqqI0KKeckZAJPqa0qKYGDa3eoB7EySyTBn
uEkQRKpk2ltpz26D2qpf6zqMN1crBHcGTYQLdYlcwDapWQ46/MWHUg49jXU0UhmML64X+yp5ZXSG
WBmuFaLByE3ZPcfQVpW95BdM6wvuKfe4IxyR39wanopsQUUUUgCiiigAqvP9+rFV5/v0AZmrf6i2
/wCvqL/0Kp7rrbf9d1/k1Qat/qLb/r6i/wDQqnuutt/13X+TUATD74/3h/KprD/jxi/3ahH3x/vD
+VTWH/HjF/u0AWKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo
oAKKKKACiiigAooooAKKKKACmv8Acb6U6mv9xvpQBkap/wAgq8/64yf+g15bdf6xf92vUtU/5BV5
/wBcZP8A0GvLbr/WL/u114f4WceJ+JHT+C/+Qi//AF7f1WuhvLWS+vNQUQXaZCxp8zhXOQPMBBxw
D0Hoc1z3gv8A5CL/APXt/Va79rmBC4aaNSmN+WHy56Z9M1lX+M1w/wDDIrnToLzS5NPuA728kXlM
N5DFcY+8DnPvXDNZXmha5LpCT6jPFOhuLVrdIoAFBIZJJmGWKjB65IIrv7i4htLeSe4lSKGNSzyO
wVVA6kk9BXJ+I9X8Ji5t9Q1DbqFxArRwRwKZ928D5Qo+Uk4GM1eGlNS91X7rc6oPlZB4Nlm0rXLz
Sbq4gaK6/wBKtVN79okz0dQcDgY3YA/iqxZW2rR4a3iuEkLlZftLMyl9zEOBu6AY5HHI44rfsIdO
vIrbUba0gVmj3RyeUodAw5Ge3oRV1JY5SwjdWKHa205wfQ1lVkpTckrEt3OY1C516S0meK1kiM8Q
xsTdJHkPhfvYznbk9t35WLS51wW+orPGqPEgFsPKZu3XP8RPXHrXQLIj52MrY64OcU6sxHNfb9ek
ZIUtHjZtpMjxAhVPl++CwzJkewqvbyeIbBIYY4XuWKTSSvKv3nJYrznjovHuK6vepcpuXeBkrnnH
rinUAYWn3Wryawkdwh+w+QCHeEqzt3JxwpB4xW7RRQAUUUUAFUdU1NNKgSeaKRod2HdBnYPU+1Xq
RlDqVYAqeCCODTVr6iZi+HY5Lrz9WuVxLdn92p/giH3R+PWpta11NFUGWCRldDsdRlS/ZT9aurdw
fbDZow85EDlAOi9BUzosgw6hhnOCM1TfvXaFbSyZm6BYyWmniS55u7g+bMf9o9vwHFOfQ7RXlntI
1t7qRzKZk6l/VvUe1W4LyC5mnihfc0DBZOOAfTNVJNctftEltaut1cxtteONx8reh9/brVR53K8d
yo6fCVvtgu7vTHkwrB3WRAfuuAR/OsyRtbtWuXtbV2uTxJNJuYcycFFzgjZ2AyMVL9j8mSFbrTTO
012Jkae43Mr792eBgbR0HtiumWaJpWiWRDInLIGGR9RVV1Zqxcn5HPLdeIJZXQRrHl0UsYPljUkf
MuW+bIySD0PFRNd+JlS3UxRjzHQySeTnYCvK7QT0PeuporAg5/RrnVobcf2lHcThIkXiJQ7PhixP
PTgAfUVY1vzbrS4ytvdbftCebFHkOUDc/dOcY569K2KZJIkMZeV1RF6sxwB+NAznbL+2rUrH5LNG
+1A8h3MgOSGY552gAH3I61Tln8Rh4nitXV4YDiPZ8mSq8k7ssc7vl9h6117OiruZlC+pPFKCGAII
IPQigLmG95rCtpCpDv8AMI+1v5ZAA4B4PKnv+FRXWoa1BNdeVavNGrusRWL/AGfk75xnqeldFTXd
YwC7KoJABJxyegoEcpcf8JDHJc3oEjyiHZBEsY2oTKwzjPzfKFP49qmub/xAIJDFb7JvMQFTDuVE
IJLAg5Y5wCO36109NZ1QqGZVLHAycZPpQBg6jLrSXkv2CJAnlh9xTdvIUnby3GTgfjVqSbVRraBE
X7BlFYbOeVYlt2exCjp3rWooA5E6xr81tdSWluZSJikZ8nCja7jHXLAhRk8YJ/J8s/iGK4mnJlKs
h8uFIAQuJSMZz94pjk8c+1dUAAMAAD2paBsqw3jSSrG1pcJnOWZRtHX0Pt+orE1SOebU5yltfeSg
VZREWAnXgkqc4GOmBg/erpaie5hjLh5o1KAFwWA2j1PpQI46S01sQ4ZbsyA/6SclxKf4No3DjoGI
x+Nauopqbz2zvA5ZeUFrIdqkMpO7OOq7h3H51uNcwpv3TRr5eN+WHy56Z9Kc0qIyqzqpc4UE4z9K
BGJYQXb6PLEqTRRyLIQru6yxseiqTzj3zTbGK7g1AySR3Mg+xKJd+flcKMKhzgk8546963Umjkj8
yORGj/vKcj86QTxNJ5ayIX27toYZx649KBmRpFxJa2GGs79izM4RlyY85OzLHJxj9ata2WOlSBbe
aYvhdsRO4ZPXgg4HXir0cqTIHidXQ9GU5BokkSFC8rqiDqzHAH40MDlhZai63AX7dvAUl2kK+aQ6
lcDP93O4ce+a2baG7hvbzaC0UlwGBlkPCbFzs6988cCr/nxZYeYmUxuG4fLnpmnhgxIBBIODg9KY
GFbWd9C9kwM7NG9wGEsxKkEtsLevbnnFU76HWnurk28MhmkjKuyzlY9hVcBCf4g27sOv0rqBIhxh
1Oc4weuOtJ5se9k3rvUbiueQPWkO5kiO7T+yp3juC0ULefEsmednQjOGORjNaVvcmdnBgmi295AA
DyRxg+36ipd6/L8w+b7vPX6U6m2IKKKKQBRRRQAVXn+/Viq8/wB+gDM1b/UW3/X1F/6FU911tv8A
ruv8mqDVv9Rbf9fUX/oVT3XW2/67r/JqAJucnHYj+VOSR40CooCjoBTc4J+tUrvVUtJZEaMt5cXm
NlgpxzjAPXpye1VGLk7ITdtzR8+T2o8+T2rCm8QhTEFix837z5w2R82dv977vUVo2F79vs0uPJeL
d/CSD+oqpUpRV2hKSbsXPPk9qPPk9qj3ex/Kjd7H8qzKJPPk9qPPk9qj3ex/Kjd7H8qAJPPk9qPP
k9qj3ex/Kjd7H8qAJPPk9qPPk9qj3ex/Kjd7H8qAJPPk9qPPk9qj3ex/Kjd7H8qAJPPk9qPPk9qj
3ex/Kjd7H8qAJPPk9qPPk9qj3ex/Kjd7H8qAJPPk9qPPk9qj3ex/Kjd7H8qAJPPk9qPPk9qj3ex/
Kjd7H8qAJPPk9qPPk9qj3ex/Kjd7H8qAJPPk9qPPk9qj3ex/Kjd7H8qAJPPk9qPPk9qj3ex/Kjd7
H8qAJPPk9qPPk9qj3ex/Kjd7H8qAJPPk9qPPk9qj3ex/Kjd7H8qAJPPk9qPPk9qj3ex/Kjd7H8qA
JPPk9qQzSEYwKZu9j+VG72P5UAVNUBGk3ef+eMn/AKDXlt1/rF/3a9S1U50q7/64Sf8AoNeW3X+s
X/drrw/ws48T8SOn8F/8hF/+vb+q1vatot5qNxdN9kgG4hY2EgG9PfKn5snvngcYPNYPgv8A5CL/
APXt/Va7a41mxtZJUnnCPFgsCrd/Tjn8OnessR8Zth/4ZOLVJbAW11HFKjRhJEZco3GCMHqPrXAe
M3t9ChGkRMqW1wUuLe1CZDFXAaPgZCfMDkdNpHQ16IGDIGUhgRkEd65xdfjneymk0OddWKv/AKPI
q+dBGDgtu9D8vQ85x2rTCVJwqXir9fuOmnJxehH4d1eB/EF7psCzCOSMXcQaF1QZOH2sRggsQRj3
qFtM1e2vIrezVoLd5JGXZL9z7uC7bfmGScKeevNdJY6jDfo3l70dOHjkXDL9R/hUq3cD232kSp5G
CfMJwPTrWVZtzbasKTu72Of03Qr+z1S1nlkBgh8xdkcpAAYZyRjnkd/WnLY6+jYScMrSHJeblV3q
2emPuhlwMda6SisibnI/8I/rFvHJJbXbG7naHzZWnJPyr82OOm7t6Vak07XGlgIunUJcl5is3+sX
+HAIwoA4K10KSJIXCOrFDtYA5weuD+Yp1FwYtFQ2t1FeW6T2774n5VgCMj1qagAooooAKoateXVj
bCe2tvtCqf3iD7231HrV+imnZiZj+HbSaO2kvbwEXd43mOD1Vf4V/AUuu6jf6fGGtLM3COpXKZLI
/YkelW4tRjm1OWyjVmaFAzuPuqT0X61cqm/eu0JLSyZQ0XTzpumRwud0x+eVv7znk1Pc2MF1EyOg
BJ3BlGGVv7wPrUdjqMd/JcCFW2QSeX5h6Me+PpVS41tvtDW8EEkbLJ5Xm3EbJGzf7J7/AF6emacV
OU9NyorZRKb6nGt5ppvZUSWOY28m4gAucquPqcY+tV5tF1lEnSzlihJJzMhG+bMm4nO3KnbxySOm
MVZS1utNlhhhSyQXE+8qkRPJbc7cnOTzz2NbMGoW1zcSQQyb5IuGwpx784wce1XXtdWLk2Yi6Xrc
kriW9kSNnXcyzcsmRwoC/KQMg465zxUTaRr4W3UalKUDo02JRvJ24bBI+7nnHvXU0VgQc/o2napp
cAV28/ZEkSRyXJIGA2Wzjudv0H05uataT6hpRQwKbgOGRVlGAQeDkqQfoRitKORJo1kjdXRhlWU5
BH1pss8cAQyuF3sEXPdj0FD1GcpHpetXpn86TaI5/lDt8h2sMFFx8oGD65yPSrKaRq1toN5bW85+
1zTb1lM5yAcE7Tj5ec8dK6MyIJRGXXzCCwXPJA6nH4in0AYV7Z6w8sL28/K24D5k2q0gIJwMd+Rk
9Kq/2Jqt1cwXN7cZaGXzUh84lF4kxnAGeWQZ9Aa6WSRIo2kkZURRlmY4AHuadQI5e203xClqqS3m
6XypQjmb/VOc7Swx845AHpjvT5tD1G4s7FmuZPtdtHPh3lyQ7KQpyBg49a6WoVuoWu3tlcGZFDso
HQHpk/gaAMI6VrDXMqC9lWAyL84nJZo9w4Ax8pCggnvmpIdP1iDS7uJrszXEkSbGeU5V8Ycg447Y
9636RiFUk9AM8CgDm5rbW92k26zyGVICbiUPhC4ZOW4+bjdxxnJpNP0zWoNSW8vJROR5qrH9oIVV
YoR25HDYzz0rfjvbeWVYo5VaRgSFHXjAP0xkfnSpdQyTyQo+6SM4cAH5TgHBP0IoALd7h1P2mJI2
4wEfdnj6DvmsTUtLu7zUpJ/sVvIke3yw0gAlXgkN8vXI75HA9a6GqVzq9laSSRzz7HjUMQVbkcDj
jnqOnrQBzTeFtQWJFUxFoT99ZdpnJzgsdp+6T0Oc47Vp3+kX880MheC6dRwzjZ5eGVuAAeu3H41o
f23p5MgW5Vim3IVS2c9MYHP4Zqa4v7a0lijnlCPMcICDz/h1HX1oAzbPSp/7MmhnSKITLJ5lvgMj
O3fOBge2KSy0u5tLzzUjjAFosb5kyJXCgDjHygYP1z0rRTU7SSyku1mAgjzvdgV2465B5FOhv7ae
Xy4pN7bBIcA4Cnpz0/DrQBn6ZBf2NmUWygWR2aRx5+BuOemF4HT/AD1t6vFcXGmvFbwxSyPgFZCA
MdyMgjPpkVYtbqG9t1ntpFkibIDL0ODg/qKW5uYrSBpp2Kxr1IUsfyHNDA5weG52jmQwW6ABfLJb
cWO9WG446qAQD79q1rfTpYLy7kieOKOe4ErKqA7xsUEH0JIPNOOuacN+buP5CoJ5x83C4Pfk9qtQ
3cFw0ywyq5gfy5MfwtgHB/AimBk2+hvbtZtGsMTW73GGVfuK5YqAMe44qpfeH9Qup59ktsDIpDzu
hJmVkVShUYwPlz179K24dVsrloFhuY3afcYgD97acNj6Usmq2cM80UlwivBGZJAc4VQMk56cAj8x
SGUhpk8Y0uYRwPcWcLIx+6CdmMA4JAzitGB7hmf7RFHGB90rJuzyfYY4x+dNF/amW3iEyeZcIXiX
u6gZyPzqzTYugUUUUgCiiigAqvP9+rFUb2G7klBtriGJcch4i5J+uRQBS1b/AFFt/wBfUX/oVT3X
W2/67r/Jqgm0+9m8v7ReQNHHIspVICpO3nGdxqe6623/AF3X+TUATfxf8CH8qzZtd06KUrM6CReM
NjIz/jWkPvj/AHh/KuM1NLFLwPcKC7tyAW3HGPTjGPxrpwtGNWfLK/yOfE1ZUo80bfM3h4g0obcS
RDaMLjbx9PShfEWloNqTRqPRSAK5RYbUomYHDle6SYDY/i9s9MVFGHFoyL5kTbyXAjb94uOBnH14
PrXo/wBn0n1f4f5HD9eqLojsv+Ek03/n4X/voUf8JJpv/Pwv/fQrlpI7FWby7WQqehKuSBg47DnO
PWllSyYu/wBmcsXdsBJAMY+UAY6dM81P1Cl/e/Ar67U8vxOo/wCEl03/AJ+F/wC+hR/wkmm/8/C/
99CuXYJPHJ5pYxHHlxGNgYuD7euOmfWkNvYBCBHIzb+CY5MYx346Zx70fUKXW/8AXyD67V8v6+Z1
P/CSab/z8L/30KP+Ek03/n4X/voVzMi2U1yWeGTaQckRuMngDHp3qOdbaUMVhYMRlF8uQIDtXqB3
+909qFgKT/m/AHjanl+J1X/CS6b/AM/C/wDfQo/4STTf+fhf++hXNPLbz+Z5kMgJ2KP3TYYBTgnA
zweD6imxLZIsitDKFcgNiN843A8cdMA+9L6hS/vfh/kH12p5fidP/wAJJpv/AD8L/wB9Cj/hJNN/
5+F/76Fck8VuJYTFA6kTDcArn5fqQOKiMUnl3fmRucyqeFPJyckfh/SqWXUn1f4EvH1V0X4nZf8A
CSab/wA/C/8AfQo/4STTf+fhf++hXE30UrX058tyC5wQhxjtUHkTf88Zf++DVrLKLV+Z/h/kS8xq
p25V+J3v/CSab/z8L/30KP8AhJNN/wCfhf8AvoVwXkTf88Zf++DR5E3/ADxl/wC+DT/suj/M/wAB
f2jV/lX4ne/8JJpv/Pwv/fQo/wCEk03/AJ+F/wC+hXBeRN/zxl/74NHkTf8APGX/AL4NH9l0f5n+
Af2jV/lX4ne/8JJpv/Pwv/fQo/4STTf+fhf++hXBeRN/zxl/74NHkTf88Zf++DR/ZdH+Z/gH9o1f
5V+J3v8Awkmm/wDPwv8A30KP+Ek03/n4X/voVwXkTf8APGX/AL4NHkTf88Zf++DR/ZdH+Z/gH9o1
f5V+J3v/AAkmm/8APwv/AH0KP+Ek03/n4X/voVwXkTf88Zf++DR5E3/PGX/vg0f2XR/mf4B/aNX+
Vfid7/wkmm/8/C/99Cj/AISTTf8An4X/AL6FcF5E3/PGX/vg0eRN/wA8Zf8Avg0f2XR/mf4B/aNX
+Vfid7/wkmm/8/C/99Cj/hJNN/5+F/76FcF5E3/PGX/vg0eRN/zxl/74NH9l0f5n+Af2jV/lX4ne
/wDCSab/AM/C/wDfQo/4STTf+fhf++hXBeRN/wA8Zf8Avg0eRN/zxl/74NH9l0f5n+Af2jV/lX4n
e/8ACSab/wA/C/8AfQo/4STTf+fhf++hXBeRN/zxl/74NHkTf88Zf++DR/ZdH+Z/gH9o1f5V+J6Z
a3Md5brPCd0bZw2RzjiluJ0tovMkztLKvHPJIA/nWNo95DZ+G7aKe5FrK4k2FlyV+Y84/wAaq27w
2mlJZNrc2qSm5jZXnUBwDICRkDkda8arBQqSiujPWpSc4KT6o29U/wCQVef9cZP/AEGvLbr/AFi/
7tepar/yC73/AK4yfyNeW3X+sX/drfD/AAs5sT8SOn8F/wDIRf8A69v6rXUX2hXF/LctJdRgyECG
RUYPCvQgEMPU/XPOa5fwX/yEX/69v6rXY3Wuw2lzLA1vcPIgBCoFO/OTxzxgA9cdOM1liPjNsP8A
wy/DEIII4k+7GoUZ9AMVxmq2l3Ckt3f6TNqGoWsn2uCWCQhTsyVUAc4Gfuc7ie/UdFrpN34XvmtZ
njMlqzJJGSrAbc5BHINcZcare69NbWVlrdvIbNxPMVnNtNuA/wBWxHD9TkAY47VvhqcpRe2ve/TX
+tTqpxbXunZaRpxDJqdzPcS3c8IBEiiMIDg42Doeg5yeOtZ1x4LiuIZFa4Bd127mjyNu0jbjPTJB
/Cq3hDX766S0g1O6guridWLCBSRARkgFgMcqO+D9a3G8SaXFatPNdxxBUMjI7DeFBxnb1rCupqdp
ku6epnJ4RH2uaaW5EgkkMm0hsZKsoH3uAu7jGCAB9ajXwdIrlzfBm8hYgChCjBzt2hgCp7jqeea3
Tq1gpIa9twQQpBkHBIyB+QzS/wBq2GM/bLfHl+b/AKwfc/vfT3rEkzP+EaC2GoW8bWyG8dZMpCQF
YBRyM8j5cge+Dmo28LNNcD7TdrLbK+4RGL72W3ENzgjPTjpWpDrWn3EdxJHdxGO2cJK5bAUkAjn8
RUkuqWMEZkmvIEQd2kA74/nxQBgjwcyGMR3oWOK0W2VBFhSAQTuAPKkg5HX5iM1btNAns9SnvIbq
MPKirt8tiqAADaq7sBeMjuMnmrlnr1he2cdytxHGjxecFkdQ3l5xuIz0qY6tYL969txwrcyDo3T8
6AJ4FlRMTyLI2Tyq7Rjtxk1JRRQAVQ1YagLZZNMKGaM5MTjiQemexq/RTTsxNXMzQdOk0+wJuTuu
52Ms7dfmPb8OlR66mreWDpRRgymN42wCM9HB9qntdSa81W5t4UBgtgFeTPV/QfQVfJwMngCqbald
ismrIq6XYJpmnQ2sZz5a/M395u5/E1YmiSeJ4pVDI4wwPcVS0rUm1MXEqxgWyyFIXzy4HU/nVa7v
tQEkge2a0tVfaLgMshK/3iB90fmfXFOMZSnbqVFXskUYNR3zWLKJLoWty1q8sSmQHkpkkDHHc9uc
0668KS3MMkH9oMsHREAYAjfvw+Gwe4yMHB5zU8trcQXdpFHqEzedICcYA2j5jgdOcc/Wrset2rmV
nJigjz+/kZVRsHbxznrxkgZ7VdfVplybuZq+Eg0rGa4V42dWZdhzIAQdrkt8wGMD0HrUR8GKFt1W
7OyJkd4yGCyMF2ljhgcng5/nW4+r6fGZA99bL5WN+ZV+XPTPPegaxpxj8wX1sU37NwlXG7GcdeuK
wIM7S/Dr6RGfss8KyeWkQPkcBVDY43dyQT9PyvXunSX9ksMtwA6yb96pj1xxn0NPsNWstTjR7O5j
lDoJAFb5tp6EjqKluruKzRHmyFdxGCOxPr7UMZzsngmPYywXKx7oTECIzlQQmcHOeShz67j9alTw
l5YjKXISRXDGQKSVAQJhcsfQkE5xnitNfEGltKsa39uxaNpAVcFdqkAnPTjIqZdWsHdUW9ty7Ywo
kGTkZH6c0CMCPwXtsPsklxFKhgeE+ZEz7S2fnXLHBOefXHatOTRJJdX0+9+0KiWce3ykjwCcEHHP
TkcHPQVPca9pltam5lvoPKCswYODkL1xjripZtVsLfZ597bx+Yu9A8gBZfUZ7UAY58MTh3MV6kav
KzMoiJ+Uur9d2S2U6nPB6VDJ4KT7HJDb3KRPMIhJIIuW2Bucg5ySwPXtW5c6vZW1sZ2nR0yP9WwJ
Oce/owP0NRQeINMuIEnW8gWGTHlu8iruz6AnNAzOn8KvM0ZN0v7u5M+drBpM5++QwyRng9h2qxd+
HWur+S4F7IiOf9UBxgjkde5VT+B9av2uq2l2wSOVRKxfEbEByFYqTj0yDT01KykTcl3Ay+okGOuP
58UCMGLwXFEQROgZGLo6xYYMTGSxOeT8hH/Avzt3nhpb3UJLiS4JikkV3hKcMB5fB57+X+tWbbxD
pt3NMkN1EVidIvM3rsZ2GQqnPJxVj+1LHIH2y3yXMf8ArB94dR9RQFyCxsLyxtoLdbxHihVV+aHk
gY77vY/mPTmG70i7ub57kXUIKlTBuiJMeMZB+bBB5z0PTnitSCeK5hWaCRZI25V0OQfxqleazHZX
PkPb3DyMuYwgU+ZyBgc+/fFDAyX8HboI4vtSMkGfIEkWcbs7i3IycnI6YwOtXrnQXkZDDeSDjDmY
GQnDBhgk8cqPwJo/4Siy+zyz7JzEib1YJnzRnB2jOTg8HOK0Lm9S1ntonSQm4copVcgEKW5PboaB
aFS00mSG1ZJ7jdMyurNHuVWLdWKknJqOw0AWOp/almU/ughATDMQqryc9PkyBjgk81bi1OOXS3vl
in2IHJjKfP8AKSCMevFR2ut293eG2jSXeIhNkgYIIBx1z/EPbrzwaBhDYXVtCY7e7jVdzt80O7lm
ZvX/AGh+XvU2o2093YtDbzrE7EbmZSQR3HBBGR6GnWN6t9C7rHJGUcxskmMhh16Ej9afd3H2W2eb
ynlCDJVMZI/EgfrQx9TJXw62yVGuUCEYjVIsBMsrN35GVAHoPWr6acFu5pzNIPMmEoVGKjhAuD6j
jNVP+EltNjOIrkoNpVgnDAkKSOexIznH41ftr1LmS5RUkVreTy23LjJwDkeowRTEVU0fb5GZ2/dS
TPlRgnzC3Q54xu61UuvDBundTfzJDyy7QC+4qFO5mzuGFHGPxq7b6zBcyWyLFcKbgyBd6Y2lCQQf
Q8GkuNdtrae4jkSbECMxcKCGIAJVeclsMO3ekPUX+y5FisQlz+8s4yqu6Z3HZtyQMfWrUCXCM/nz
JID90LHtxyfc54x+XvUQ1OJprOPy5c3aF0bbwMDOCexxVymxdAooopAFFFFABUcnWpKjk+9QBFJ/
q2+lVLrrbf8AXdf5NVuT/Vt9KqXXW2/67r/JqAJh98f7w/lXA3hH/CUJ/wBdo/8A2Wu+H3x/vD+V
JZ2NpJbxSvbQNLgHeYwTn611YXEKhJyavdWOfE0HWiknazuX65m513V0uTDBZIw+0PF5rRybFUY2
89yc9cAcY966aucXXrqS41Uoi+RZQOyFgMs4dxyB2GyuU6RJNV1ODSLC4MJluGty0zeS4AYFQRsH
flsDjp1Apv8Awkl6moyQy2mI0wzKIZN6Ju2577s8H5emal1vVL6wtQ8U0KqsKPI5ALfewxVSRnjt
+XNNPiaCO4ctbhpAGVJHZULYk2Y9lBwSTigRB/wkWrP5gOnmFRHEd7QSHYzAbsgcsOcDH402HWdc
isrRGsi8sjpES8T5xsTczH1yx7Y+U1ZTxlaNbrI0RRmBIRpF5+QtnjtxjPrVeXxrkW0kVqQjIXkR
pF3k7GbaBn1A+bp1oGS6bq2qH7Kt1CQZfLEs7QSY3bRlQv8ACc5Gegx7ior+7uxJe7JLqSNJ5Bth
ZshgiFEyoJUHLHp1xmn3PjApeSW8dqAIXZJZDIOMI5+X1IKEYq/Bq32ux1Ce1jjieFCQ7sMswB5Z
RyBx36in5gZgutQk1Ms322B1ZPKjO4xMvmuHLEjH3Md/TFWdV1K4gv8A7Tp3mX6iBtkEJbYGAPJI
BVgeBjORxjrWlaXkl3fSxuAIVt4n2FeSX3Z/DAA/Or0UMcCbIY0jX+6q4FJiOYW/1q80zVfMPlS+
QptvIhYFSRgkFhzz2xxSSajrUN6Z3ikWIRCEq0TMisHw0uF5OewB6c11dFAHI3Wua2tyJI7Fx5UJ
Jg8t8ZIT5mbGCBluBz8po+36pMZPOaeLf84ESnO390H2AjJwC5HGc59K66kIBIJAyOh9KAOXttdn
gkeG2juLuDzQkTSRuZAdyZDcZAwzEFsZAqJ9e1m6giAs3gLzgBlgk3ModOP9k7S2SeODiuuooA5O
fXNdJiiS0WJjDHLJJ9ndghLrlcd/lJB75Bqf7Zf3lrdWzxz2zLA7xFFk8x2BOCH6DoODyc+ldLRQ
O5zE+s3ulWYh8ve8UMUhln3OcOQvOOS24tx6Co5dd1VyUktVt0EKyJLtdTK+7gAEYAOANp55rpja
wFnYwxkyEM5Kj5iOhPrjFSEBuoB5zzQIz9FlaW0mLStKFuZlVmbdwHIAz7dK0aaiLGu1FCjrgDFO
oAKKKKACiiigAooooAKKKKACiiigCCYkNwccVm6wzGxXk/6+L/0Nat3y3hdfsgttuPm80tnPtiqN
xaaldIscxslQSI5KF8/KwPGfpQA/Vf8AkF3v/XGT+Rry26/1i/7tepar/wAgq8/64yfyry26/wBY
v+7XXh/hZx4n4kdP4L/5CL/9e39VrsLrQYLu6kuHnuFlbAVkKgoO4HHOcnrn2xXH+C/+Qi//AF7f
1Wurvtcms7i7jFskggjWRf3hUkEgHOR2z2z+FZV/jNsP8Bb1LTI77Q7nTQoEcsDQqCSAAVwORz+V
cZD4A1K20uzsJrqz1CyjXdcW00ewlvRJANwBOc5P8zXoNcZP4w0O3McVxrUqTrNslUGTjGcjpSp1
p0/hN4ycdjQ8EL9m0eexGnzWCWdy8SRSJtGD82VPRhliMj0q0/haxeF48zAMc5DDIO0r6ejGn6Dq
lpq0dxNp901zbrIFDHdwdoJHPPeiPWz9m+1zQ7bWRtkAjJeWQ5I+6B7E9T71E5ucnLuF9bjIvC9j
FcyzgyF5HaRshD8zKwY/d5zuJwcj2xxUa+ELBZDIJLgylFXzCVLAqcqwJXIIwOBxx0qU+KNNBcCS
VgoByImw33eAccn51/Oi38TWkz7HjuIWMjRgPEecOEzn0LECpETPokUltdwNPORdMrux25DAAbh8
vB+UfQ9MVCnhq0S7W4824Yo+9EZwVU53Htk5PPJNE/iW0jjLwx3FxhkVvKiJ2lnCgH35zj0o/wCE
nsERmlkYBFJZljcqCMnbnH3sAnFAyNvCdi0qSeZcb44VhjO4fIFxgjjrlQfTPalk8K2ck885lnE0
5VnkATduAA3BtuQTtHQj2xUlx4hgitYLiNT5csjxsZAVMZUMTkYz1XFWbDV7XUpJUtmctF13xlcj
JGRnqMqRn2oEXelLRRQAVQ1ayuLy2X7Hctb3Ebbkb+E+zD0q/RTTs7iauUNG00aVpyW+7fISXlf+
856moNc0u71BFNjeNbuVMbqc7WQ9fxrWpjypErF3VQqljk9AO9NSfNcOVWsR2dpHY2cVtCMRxKFW
pmAZSrAEEYIPes3RL2fUoJbyTAglc/Z1xghBxk/WoL2LUy0slw8bWaucR2xZXEfqSfvH2GB9aqML
ys2OOuxUtvtrNatb2UzxWt00IMn7s+XuKlsMckAe3IHFWbjwlYXJbzGmIz8ikqRH8+/AyORns2R6
YqKXTrM3eni3LssziQuXJ3BfmHP4CrcetnyGu5oQtoz+XDsJeWRtxXG0Dvg96uu7tP8Arcud76iR
eGrOKVH3TMI5BJGhK7UbIY4AHcgH+WKibwlpzNbtiTdbhAmdrDCrtAIII6fj6YqQ+KdNBbEkpCru
3CFsHhTgHHXDLx71JYa/b39yYFhuI5N8igPGQCEIBbPTGSKwIC20KG0jKwXN0hKqpYOM7VBCjp23
foKsXGmRXVoLeeSV1D79xb5up7496jttVWfVbiyKhWhJxySWACHPTA+/jrUuoXhsoFZI/MkkkWKN
ScAsxwMnsKB6mfP4UsJ0dGaYK6eWwDDBACAdR28tT/8AW4pw8MWQiWMNKFD7zt2ru+UKRwBgEAZA
xS3HiO007Meot5c6bQ4jVnXLZIAOOeFJ+gpknizT47toP3pWMyedKEOyIIu4kn0xQGokHhSztrZo
IZZ0jeEwOF2DehzjOF6jJwevrmrk2jW9xcRzzNI8qCMbiRzsYsCePU80lhrtnqTEWzOdsfmEshUA
Zx378U2HX7G4sY7uFpJEkkMSKsZLs4zkBfwJ+goEVl8J2KFNstzsQDEe8bcgKM9M5wgHXFRS+E4m
mt/LuZliRSkmSCzJtKhQcdMEj196tSeJtPj35aZirFQFhY78bslcDkDa3PtUcviqxjmVVWeSLDlp
kiJVQq7ifyoHqS2nhyystRF7CHEu0qd209Sx6kZH3j0I981D/wAIpZ4QefdbVPKhlAYbtwGMcAEn
AGKst4gsVQEtJuJZQnlNuLAgFQMdcsOKgj8T2zPIJIp4tsjxKjxNvkZWUfKAOeWFACzeF7KeOONn
nCRyJIFDDBKqqjOR6IPfr60jeFrJzbb3lf7NuEQcIwVTj5cFTxwOevvVi116xvbtbeB5C7DIJjYK
TtDYyRjOCDiqlr4ssp7OOaVZopGALR+UxIGMlunK4B56UCNSwsk0+zjto3kdUzhpDk9c/wCQKqz6
HHcXM0xurlWlKsNpX92V6bTtz68EkcnitIEEAg5B6VlX2rXFrfG2htopS4UITKRhiej/AC8Z5xjP
SgCGTwjpksRikWZowpWNfNI8rP3tpGDz15zWiNMtVMRjjEfly+cAnG58EEn14NYj+MUjs2uXt0VZ
ELWytMFMhU4YHIwMde/Fa0uqp59stsI545Zmhd1kH7tgpbGO/SmBJHpVrHGVEYLEOPMONwDklgD6
ZNQw6Hb287TRyzhjF5Q+YfL8oXIOM5wo9vbmmw6z5unNKYo1uwsjC280ZOxip5x0464pljrjXmof
Z/s4RTAsobeepVTjpj+L1zxyBkUhslg0f7PbJCl9eBUXaCGUHvzwo556+1WL+xW/tPs7yyxqSCWT
GTg5wcggj1GKbpl5Je2pkliVGDsoKMWVgD94EgZH4U+/uHtLKWaMRlkGQJGKqfxAJ/ShiKn9gWx8
7fLO/m/3mHy/MGOMDuQCf0xVoadbfaHmaMO7yCUFxnawULkenArKPiOdUdzYgAYKqZcMAHCPuGOC
C3A7+1aEOqK1zcQ3ASFo5/JjBkz5uVDDHvz0pgKNItgIgQzLG0jBWOQfMzuB9RyarT+GNOuXPmpJ
5X8EKvtSNsAblxgg4AHXFEGtu5tfPtkhSYzLIxlyIzGT7c5x1qC78URWrSvsia3wywyecB5sgUNt
6YAIYYOexpD1NA6VAIbaNHlQWsZjiZW5AK7c5PfFT29sYGcmeaXd2kYEDknjj3/QVVTVGkl04CFT
Hexl94kzsO3djGOfrWjTd+ougUUUUgCiiigAqOT71SVHJ96gCOT/AFbfSqd11tv+u6/yarkn+rb6
VTuutt/13X+TUATD74/3h/KprD/jxi/3ahH3x/vD+VTWH/HjF/u0AWKq38lraWFxNdIPICHzQEzu
HcYHJ61aqoHt9ThuIHjLIkhikVx1Iwfy5FAGRJ4k0gSrZiGSZIyY5Mwlli2KWOc+m0j6irNxrWlR
zOjxs8mNr7bcsSCVAB47l1496tNotg0rSNbgszmQjccbiCCcZxyCc+ueaLfQ9OtRiG1Qcg5JJOQQ
w5J9VB/CgCnDNZwWmnGxtEktrl/JDPwyKdxxgjJ5yMVrC3hBBEMeQu0HaOB6fSmLY2yRRRLCoSJt
6L/dbnn9TVigCP7PCST5UeWO4/KOT602S1glSVHiQrMu2TjG4Yxg1NRQBEttCk5mWMCQoIyw/ujk
D9TUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARydRTD0NP
k6imHoaAM3VP+QVef9cZP/Qa8tuv9Yv+7XqWqf8AIKvP+uMn/oNeW3X+sX/drrw/ws48T8SOn8F/
8hF/+vb+q13LaXaPJNI8IZpxtcsScj09h9K4bwX/AMhF/wDr2/qtdFqWs3FtfXdvHdQoQimAMin5
8/dzu7++MfSsq/xm2H/hnRVmi2vUihjUW58p92S7cjn2960IyWjUtjcQM46VxniAhNN0hktJNzar
bKzrtG8ebyOvQ+9Ymx1ttFKkk0k2wGQggKSQMDHpVd9C0+Tzd1sMStvYBmA3ZzkYPynPcYpbFVS9
uFS3MC7EO0gDPLc8E1mp4geK2a6mlhkZ5fKW1BCGE7iPnYnjp3HXpQBpSaJp8sTRtaoEYEEKSvBA
BHHqFUfhR/YenbZFFqgEgIYAkdSDx6cgHjvWW3jCMCRxZS+Wq5VmdRkgIWz6ACQc+xotvFZdiLi0
VVEjgukykKgkCBj6feB+nNAGkugaaibFtQq7AmFZhkA5HfqDznrSnQdNLFvskeShQjnBBz29eTz1
5rLl8W+ZCZLK2STaY8mSdUGGkC5HqMHOelJ/wmEUaOWt5JPLRmJDKGJGTgLnpgfe6ZoGbUml2U0f
lyW6Mm9pMH+82cn8cn86adHsDj/RkGBt4yOPmP8A7M351mXniF47GC4ERhJnkhmQ4YqUVs4OcHlR
VjT/ABFBeSSrOn2UKNyNLIuHXcwz14+43HpTA1IYY7eIRxLtQZIH1OakpkcqTIHidXQ9GU5FPpCC
iiigArL1nQYdZVC8skMi/LvjPJU9VPtWpVW71K1sSwuJkRhGZNpPJUelVFtPQTSa1J4YkghSKJQq
IoVQOwFKzKilmYKo6knArM0B7m5tHvrpnzdN5iRk8Rp/CAPpzUd3pNy0klw1012N5dbaVVChf7q4
xz7nNUopytJjjqZ0BnMkJWeytxBdny45Zgx8pnxgbe5B4Ge4BrbfQ9PkMxa3H75tz4ZgN2c5AB4O
e4waovFaXFzpZt4UWKRjJwuOQM4PvkVGuvvFBJdTSwuTL5K2gwpiO4qN7E8dMnI71dfVr+upc73N
J9E094jGbVApBGFJXqoU9PZQPwpU0WwiLGO2RS3XGfUHj05VfyrKPjBNruLGXywmVYuoyQqMR14A
Djn2NSab4lN5cmKeCOJd8mJBMCoVWUKT7ksOKxINOTSbKWZ5nt0MjnLNzk9P/iR+VObTbRrN7VoF
MDnLISevr7GqEOtAa3dWlzIkaRk7CcAYCxnkk9cuan1LU1gsBNazQkNKsRmJ3JFk4LHHpS6DHtot
g0ewwd1O7e27K5AO7Oc8nv3pg8P6Yu7FmnzMzHJJzkEHv0IJ46Vn3Pif+zsxNE96yGNPNiKgSMwY
8DPHCn8cCoZPGiC7kWO0LW8Jl8yTeMsEXcNo7k4Ix7UCNuLR7KJtyw7m8ow5d2f5D1HJNIui2CWa
2q24EKv5igM2Q3ruznP41T0/xGl7IVlt2tsW5nPmOCSAcHGOw9femW/ieO50qG8S3ZWlnMCo8iqA
Rnkt0AwOPwFAF9dGsEd3W1Tc7FieepBBx6febp6mmHQNMJJNopJ4OSem3bjr0wcY6Vnv4tXMixWU
kjhyqgSKMgb8k/3f9WeD7VDN4x2Tjy7QNAqu7lpQHwI94wPfnjNA9TXk0LTpZpZntVMkv3m3EHqD
kc8HKg5HpQ2hac+/dbKS5yTuOc8cg54PyjkelUJPFcMTGJ4CLgFlMZkX5SGVeT2B3jk+lQL4rdJJ
RcWyqyyvEiJKpU4ZACzfw/foA3IdMs7d0eG3RGQ5UgdDtC/yAFQvoWmuqK1pHhAoXGRgAEAfTBPH
eqlj4kW+vEhS0lVZAQrsy8sEV9uPo3WoZPF8KPAq2k7iXdkjHy7cbwfcE4x7H0oEa8WnWsMwmjhC
yAkggnvnP8zUU2iWE8k0ksG5p8GT52wSMYOM4B4HI5pbLVre6toJJJIoZZVVvJaVSy5wQPr8y/mK
zdS1eeDUJYbe8tkjG1HZ1H7hjjGeeeD7AZFAGidD00+aGsoGEow4ZcjHTgdvwq28EchjLoCYm3J/
snBGR+BNcjJ4uu4rGWdvK8x4yyxiFmFuVP8AHjJwRkjOK359RlM9n5ClI5LgwyCWIgt8jEFfbIoA
vJbQxwNCkYEbbsqOhyST+ZJqBdJskkaRbdQzR+WeT93AGMfQAZ9hVO31O6l0p2YKboLMRIIj5QKM
wGefbpmq+n65PPqRjnkhWH7MJOmMNsVieucfMeox0wSc0DNBND09IliEGUVdoDOxwORjk+5qxd2N
vfW4guE3RghgAxUgjocjmqOl6skll5l5eWxJZij7lTcnOGIyccA/lVjVrv7Jpskq3CQscBHZQ2WJ
4GCQOenWhiFTR7FDKRbrmXG/JJzjp19xn3qykMcbyOiANKQzkfxHAH8gK5v+3r/ZOwltS6bSyBc+
Vh1UjOedwJIPt3rWt7+b7ZdwzLv2XAjjMUZwqlFYbuffrTAtpZW8bRssSgxszIfQtncfxyaik0mx
muJJ5bWKSSRdrlxkEfQ8enPsKzrbVbwtZGYxOsj3CSiOM5YoWxt59B05qpf+Jp7We4KgbdjLHC0L
F422KwdwOQuWIPHbrSGb76favDHE0CeXEhRFHAVSNpA/DinW9nBas7QRhC/3iCeeSf5k1nLqkudK
laSFbe5hZ5SylSMJuyCTwOvWtOK5gnLCGaOQr94IwOOSP5g/lTYuhLRRRSAKKKKACo5PvVJUcnWg
CKT/AFbfSql11tv+u6/yarkn+rb6VTuutt/13X+TUATD74/3h/KprD/jxi/3ahH3x/vD+VTWH/Hj
F/u0AWKz8w6QlxPdT/6+bcMKSeQAFAGSeB/OtCsW40KV2MsM0McoZipEbYIbeCDhs9H6gjkfhQBp
NfW6W/ntJtiyq7mBHJxj+YpqalaSbQlwjFoxIoHVlIJBA78KfyrDl8KMWiea/wDMSN1dmmQlht2E
kHdwTs5Jz1pjeFhOLZpL2BpY4xFbuIv+WYRlBHzfe+fORxwOKBnSwXEVyheFw6hipI7EHBH51A+q
WcbFXuI1Yb8gn+5jd+WR+dZEHhlorzzFuonAB3B4iScvvH8XHXt175p0vhgSXSyNdheYiI1j4woA
kA56MAPpjvQI3HnjjK73C7uhPTqAOfqRUNtqNreMVgmVyCQO27HXGeo9xxWA3g15DKZ71ZS85n2v
ESm7ch5G7/Y7Y61JL4UkknaYXMCNiVY1EJKxBwAdoLcE45xxycAUAdGsiM7IrqWTG5QeVz0zTq5I
eCRFbhReKMNG7ttZS+xSuGIbOBkEc8EV06MVmIeZCr48pMYOAOec80ATUUUUAFFFFABRRRQAUUUU
AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEcnUUw9DT5Ooph6GgDN1T/AJBV5/1xk/8AQa8t
uv8AWL/u16lqn/IKvP8ArjJ/6DXlt1/rF/3a68P8LOPE/Ejp/Bf/ACEX/wCvb+q13z2lvJv3wRNv
ILbkB3EdM+tcD4L/AOQi/wD17f1WtzVrm6S71FYJLsKI12bN+FkzwB8vf0GQe5FZV/jNcP8Awzpw
AAABgDtWXd6DBexW8M1xPst50uI1UqMMjbh25Ga0oizRIWBDFRkHrmueur6Y6lJcJatIYZFWBlkG
XTo+F787v++Qfrzzlymk5qKN6G38qR3aV5GcAEvjoM+gHqaVrWBy5aGNjJjflB82OmfWs3SRqRvr
p79lkgcBoJI3+Qqeg246+/esdNbv7G5+zKr3LyTP+8lSTEmMfKi4G3rj+6Ouaos6t4IpFKyRIwPU
MoP+egoNvCd4MSHf975R8319a5zS77VjqltDcLItu28SNLExLHGVwei9/rVPT9S1eBZ3eC6uWEjc
OHwpAkPTaD2XgZHTByaB2OuNrAcZgi4XaPkH3fT6UvkRbt3lJu27c7RnHp9K597q61nw+twkk0cy
3Xl5tSyblEoQnB5Hy5PPSmXus6rZJcSR2LSFN6Qja5B2uFG7HcjJyPagR0pjQjBRSM56d6QwxnrG
h/4CP89656TXdViEjyWSRxEnY5jkbywH2ksBycjnj+VVLTxBq7mGQWatFdfvN8m8Ig8tCFUgHuSc
n3oA65VCjCgAegpaqaXdSXmmwTzoUkdcspQrg/Q81boAKKKKACqWpaTZ6tGiXkW8I25SDgj8fQ1d
rN1XXLbSOLneCyMyHbwxH8OfWqje/u7ila2poLtUbVwAvGB2qO4uobVQ08ioD0z1P4Vn+HrWWKxa
6uv+Pq8bzpAf4c9F/AUsuhxLLNc20kq3TuZMySM6sf7pBzhfYYxVRjHmtJjjruY8JjeWNpb9o3W8
8yMQW7FcNJ9z5geoPJ4xk4rqGtoHLloY2Mgw5KD5h7+tZTXSXl1pTsAgLNlD1VwCMfgRislbvXVi
hQrcuY7szM2zBliLsFi6dvX0C+tXX3V/61LmmdY8EUilXiRlPUFQR/nijyYgSfLTLdTtHP8AnArl
f7c1q8s41W2WGeRQw8uOQ7T5ighsgYGDz1zz0qzd3t/K2jvMssIaaRbhY96qSDhegJwcZAOBz1rA
g6IxRsSWRST3Io8pNhTYuxuq44NcdJrGuSNPNFE6HKYBgkKxAY3jb1Y8kZ9uK6HXnlTSWeGV42DK
TsDZcZ5XKglc+uOKBl420Bi8owxmPgbNgxx04oFtCDkQxg7t3Cjr6/WuW/t3U7wSRw28iiGUKwRG
3qARwzYwSQT93pirEesarb6BeXEsHm3cc22KLyXGFOMbu54PUUCsdDFbQQ/6qGNOMfKoHHpR9mh8
nyfJj8r+5tG38q5qO91kw6rKqzLIsDPbrJEWAbc2AB34x+lOudc1WCGWdbLzCA4h2xybThkALD3y
T7Y780DsdIIYgWIjQFjkkKOT0zSfZoOf3MfJ3fdHXpmufbXNWUO8likcbZ2kxyMYwGUEsB14Y9PS
qtp4h1aQwSizVoroh977giDy0O1SATySxyfQ0COqa2gYuWhjJkGHJUfMPf1oNtAQwMMZDDDDaOR7
/kKxjrOoDS7S4jsTLLNuDqEZdpHOccnBAbBPU49az7vU9clmcQQvAjplVMbsS37ojntgM2R7N3oB
HWCNAQQqgj0FNa3hfG+JG2ncMqDg+v1rEudY1OCzsWWxRpZZ2imJDBUCkjIGCRuxxn1rMl8R6rar
eXUkAEagYV4ZAkZCsSnTOScDd92gLHX+VHnPlpkd8f59BTGtbd3dmgiLOMMSgyw9DUcN/HNIsYSY
Mc/eiYDjPcjHasTVLqU6nOkU99HCgVZxGjHjg7k+Xt0JGScn0oA6IRIGchFBf7xx97604gHGQDjk
VxT3mtCHLtdCQ/8AH0DG+EIzsCbRn5uASPXmta9udRe8tP3U9vlvkSM71c7lzvIGANpY8+lArm+F
AGABj0xTRDGGLCNNxXaTtGSPT6VjRy3kejyLcCdgBLmdmKvw5C8KueRjkCnaM1688ZunuCjWUZIk
UDD5IJ6dSMHmgZqJa28a7UgiVfQIAKfJDHNGUljR0P8ACwyPyrMsL5rWyCXv2qSUNJ8xhZiVDtj7
ox0H8vWptbn8nSpGBnUthVMIbcCTweASB68UMZcWCJc7Y0G7GcKOcdKeAASQBk9feuUEupulxsuL
xpFCliI8KcOu3aCOjLuJx+lbNs95He3iFZJozcgKzkL5aFFPy8cgHNMRohFGMKOOnFHlpvL7F3kY
LY5I9Kw7Y6ij2RaS5lw9wrq4ADgFthY446DHaqd9d6uLq5+zw3ZmaMqYkwUiUquHUnAZg27vz6cU
h2OoKKwAKggDGCKFREztVVz1wKyBNdp/ZM8huQnksbiPZnnZn5gBnOewrSgu0uWcIsgK9d8bL3I4
yOen8vWm0LoT0UUUgCiiigAqOTrUlRydaAIpP9W30qpddbb/AK7r/Jqtyf6tvpVS6623/Xdf5NQB
MPvj/eH8qmsP+PGL/dqEffH+8P5VNYf8eMX+7QBYrmbnTddmuSI7uSO3Ny7HbKN5Q4x2wAORgex6
101cxC2t2dxtCvMJriVyzx5BHmYVc7vkATkHv/MASTQb97DS48sz21u0UqPckq5+UjPHzA7SOemR
UkmnXsKWcdvGsdwILgIyjKQMzKwXOOOMgHHaoH1HxJGHD2yk/ZUZdkBJ8w4z3I+UkjHUgZp7za9e
rErK9rMskTYWIlAu3LEnPPJI29sCgYp0nV1uDLbyNEJGQsPtGXBCqAWbHzAYbjvkUp0rWHvbW4eU
FoZZPNPm8yIxXGzj5BxyPbGec07U7vXXgtEgtggntGM5VSWWUr90Efd5PBPp1qFb3xLmaNYI02MQ
m6JmO0IxHOQCWIXoeMmmBPqFhrkt3O1pdPHA06OMSDcVCkFVGMAZwfU80jWGuEIPPfeJmLuJ8Bum
1gMfdAzlO+etQS3+t2N01zdEtbxRn92IgqynKnAOeGwxA9SKRtW19pL6O3hjme3OziEhVOEOQc/M
Rub5QOw/FALeaNrstjND9saYTKd6mbbyd44O3hcGPjvg/jPZ2N9BqVmLpGkWOd2jkzu2J5RH0UZI
AA696ZeSX0txagNJ9qNrG5SMsgJ81N52n29ecUi33iMzxReQoDwRmSQw8I7Mu7HPQAtxn+HNMDqK
K5GfXNchuIrYQRtdPE+2Ex8OVVjuzu45A+XHfrzVi5m1GaCwDOy30ltPtVN0YZxtx8p74zjNILHT
UVx0iXrRogsr1bET5O1pfNZNw65bd6/lmrpuLtdLtrWKYy6lA294fMDSBcErvweeqg0BY6SiuUY+
IBdG4l3P5EJVQkWFYsUy23dyVBfA77ferlzda5/Z9q9tEnnmOR5Q0WdxGNgxu+Ut364oEb9FcvNf
eIop/K8mPy1SQCXyGbzCCwU4XOOAp98mq1xNqyWV7LeebHbzKWUN8rxOEj24IbjLbhtHegdjsaKz
zFOuuiVTKYDbFSC3yBtwxx64zzWNaX/iWVY2mtolKtmSMQkZ+dRtBJ7AsdwznFAjqaK5TT59Qk1m
B9QM0byT4SNgUXAhfeAuTkBsc9+DW1oTtJpSNIztIXk3liSQ285HNAzRooooEFFFFABRRRQAUUUU
AFFFFAEcnUUw9DT5Ooph6GgDN1T/AJBV5/1xk/8AQa8tuv8AWL/u16lqn/IKvP8ArjJ/6DXlt1/r
F/3a68P8LOPE/Ejp/Bf/ACEX/wCvb+q16JXnfgv/AJCL/wDXt/Va3NY0vU7q61E6fAiLcQiNmeTy
/M4/hKknPbJAx0FZV/jNsP8AAdOeeKzBpOli6SMJidEyqiV8qvTjnpV9GMVqrTFVKplzngYHPNYA
uzuNyZrczGX7QE3AOIsYx167eMetc02luOo1pdHQQwx28KRRLtjQYUegpTGjSLIUUuoIViOQD1wf
wFZWl6bPDql1ftdI1vcZMcMQIXBOQx/2sd/eqS2uoW1vJ5FpKt6Zf390jRs0ybjym44zjHDAAcgV
ZqvI6WmyRpLG0cihkYYZSOCK5KWx8RQNc3NumbqRMBldSAx2ZO1jj+E+lSw3PiC5+0vH5hCTFAu2
IA4fGFJ5xjOS2e2BQB00EEVtCsUEaRxqMKiDAH4VJXOrbateaVfxaqHd2lzEkKJ90NkAZbDLgDIb
GeRUSQeJBGCjpAFU7YI1jKLhU2jJ5wTvB59PrQB0VzbQ3kLQ3MSSxN1R1yD+FSKoRQqgBQMAAcAV
yktlr19d+ZcxkRx3BMY3qNqb4zjg8j5T15rVGnfZtfudQis1cyQxoGUgMW3NuPPsV+uKANeiobaW
WVCZoGgYH7rMDngeh9cj8KmoAKKKKACori2hu4wlxEkqAhgHXIyOhqWsjXNak0dAwtXlR1IV15xJ
2BHvTim3ZCbSWppR3EM0ssccis8RAdQfuk+tQXGqW8DtGG82ZescXzMPr6fjUOhWD2GmqJzm5lPm
zt6uev5dKkl0e0fe8MMcE7OZPOiUK28/xEjqfXPWrioKVpbDjruYSwIksf2u2v5JJLsTRuXEXzF8
gYUgYA69cgHPWurrBN8JrvTXuCqusjRSL2EmCo/M9Kzl0TWEjhjX7kN2btN03VmdvlP+yAc4/wBr
Harr7q/9alzjZnX0VyRtvEd5ZxwXTybnVTIwWJNjCRTngndxnHQcc5zVm6sdRuH0iS5i897eaTzj
tQ8ZwrEZAzgA5HT0rAg6SiuMk07xDM08p89JXKEurRB/lxkJ2APOM8kda6PWIJ7jTwkKNJh1aSIM
FMqA/MuenI/A9KALqRpHu8tFXcSx2jGSepp9czeWurSxy21lbtb2bwFY4cxgLlWyCQcht23GDjGa
qTt4g0uFvLVkt0VuRsclml4Iyc5wcYPFAHY0Vy8x8T+Swh3bjGuCyxZX5+eM4Z9vuFHbNS6xFrly
IYLVcwvass7fIu5yp98qQcdCRz7UAb1xbw3ULQ3EaSxt1RxkH8KeiLGioihVUYCgYAFc3LYazBZ2
n2R5VmjNzuRXQqS24xlt3UA4+mabOniSGcx2ar5f74+YRH85IOwkcYOcH3zzigZ1FFcjqF1rNvcQ
WMk7O08jRx7RHukQk5LDqPl6FQO+aktk8SQYjbcY42iVI0WPBQAA/OST9eD04oEdVUNxaW92EFzD
HKEYModQcH1rKvRrjX0qW4iNoeFLBc4Iz09iCPff7VmW2m6/DMs3my+ZGXOHaMowZojsA7LgP7jH
B9RagddRVZ7idZ9i2bsm4DzA64xxzjOe5/75+lYmqafPd6lPJ/Z0jxDarBXQC5TgnJLdQegIHQ88
0AdJRXFPoWreSFaJ2cf69ldG+0nnZwxxheAc49s1rXthqNxeWjzJHKUI2vEdohO5SSQTk5UMOPXp
zQI36KxIrC6g0d7YxK8X70eSR5jnLkryzAEYI4P50uj6dcWs8ck6Fc2UcT/vC3zKTx19COlAzaor
JsEutNsRbrZSShWkYYlXoXYgZJz0x+dTa1HJPpUkcdp9paTCmPjgE8nBIBx1xmgDQorlBol46XAE
EobCkO8wzKQ6lScHqqgg59e9bNtZ3NveXjR7FimuBId5LFl2KDjng5B/wpgaVFYNtpNzbvZNGu1o
HuOWkLAKxYpkZ57e9VL/AErV57q5aBIvOlQpJOZCiuhVRsXGSpBDHkcZ680h2OporGFldR/2VOYS
01rAyyosvGdmMDJweR1rSgmllZxLbNCB0LMp3cn0PsD+NNiJ6KKKQBRRRQAVHJ96pKjk+9QBFJ/q
2+lVLrrbf9d1/k1XJP8AVt9Kp3XW2/67r/JqAJh98f7w/lVG51htKtrJRB5wlRzhW+clRkBVAySf
XoKvD74/3h/Ks++1iTS7GzSCLzZp8Ki44++i5JyOm/p3oAh0vxLdX32qaW1iWKO0E8cUUvmO5y2Q
COD0HuCfeqsfjC6PlzNZK0c3lqqCZdiEmTJL9OQoGPWtqbUbrZqn2aBZXtQFiTu7bQxz+Yqgvi6F
o4441aWfbC0sixMsS72UEZPIODnBoARPE92cO2mqsZwQfP5wd4XOVAHMZzzwGFOuNZupbO1urXjz
LWWYxqu4EgqB1GSBuJ4xmnxeMLOdImhtb5xLgr+5xwWCqeSOCWGPr2wabB4jsry6MstlKghwsEzq
pJZlyVHOQe2O+KB9SjJr82I40vpkh8/Y163lEFM4yCF2/wCHI960pdUvbfQbO7kUtMW/eKEwXUKx
6fw5wPpmkPi+xUJugvA0jhY0EW5n+9yACePkb8qtmawt9XkxbkXbR7nlWLllAzjP4UB1MeTX79rw
tPawpBBHl4y+V3lkCsWKcKobJI6YPWrlx4gngsba4h08SGaN5nHmEABSBwdvOc8dOK0Y75r2wabT
48vnCrMCg96pP4hW1s/tF2hUCeaIrGpYts3dORz8tMCnL4suIZzA2nKJESQszXAVCVZh8pYAkfLk
8cZFT6Trl1d30kc0AMEhZoXXIIASM4wQOPnOCefapB4ssfOMTRXSyKjNIpj/ANXtLDDHOASVIHP8
6lstcOrFf7OgfauxpWnGzaG7DvuH5e9AjCHi2cn+0F01RmPZsLpkEuoG9/4cZ5B71pL4mu2mGdNA
hLY3CbLbfMEZOAuM5YHr0B5q7darNBJdRrHHvjmhjjJzghyBk/Tn8hWrSGzlrbxddXUaOmmBQeWB
nyVBZVAwAfmy3IOMYNWNJ1651CAxSrbx3AsxNvRiy7iOcjHAB7HnrXQ0UCOLj8VXi6bDDGjyTvbs
5upGTlgzD5QAA4+XsOhFXP8AhLrlhMY9Lz5TSZDTgNtTrkAEhj2BxXT9KWgDmR4nuorycXdrEkEK
AMEdi+7eyEj5Rlchfpupk3jCaFbr/QEd4JPLKpP9w7tuXJACj0+ldJPbxXIQTLuCOHAycZHT60sM
EVuGEKBA7l2x3YnJP50AUtIupboXZmcttmwgOPlUorbcjg4LHmtGo4oIoN/kxonmMXfaMbmPUn3q
SgAooooAKKKKACiiigAooooAKKKKACiiigCOTqKYehp8nUUw9DQBm6p/yCrz/rjJ/wCg15bdf6xf
92vUtU/5BV5/1xk/9Bry26/1i/7tdeH+FnHifiR03gz/AJCEn/Xsf5rTX+IV9Gzhnsl2HDZB49M8
07wZ/wAhCT/r1P8ANa5G5s5Zp5n+T5htTLsMHPXgcY9O9ZV/jNcP8B2B8c6owwUtSD/0zP8AjVdv
F150Sy09nxkAw4H4nNYaghQCckDk+tMcKYGbL/MMlk4bHYVnFJ7lzvsjpR471UOEWK1CheoQ8egx
mg+P9RXOTZjacH5TwfTrXORrtHPUnJrObTLg7j9oTc7b2wuMNzgg9+v6Una+hUbtXZ2w8daqcEJa
8/7B/wAaZJ8QNQh2+abNNxwNykZ/WuJWzupLp0eSQRDG59zDfz0H4elWJLW4EalDFLL5HlN5hIB9
waRR2P8AwnOq/wBy2/74P+NJ/wAJ3qe7bttd2M42HOPzriXsL14WjWcKCuFy53DJz19ulOGnXBuv
NeYEZGSHbLDOce3pxQB2h8d6mv3ltR9UP+NL/wAJ1qv9y2/74P8AjXDxaZdJIJHnBk5G4M3yjcDx
+R/OrkEU0NuFyjSZ5ZmYhvf2Pt0oA6z/AITrVf7lr/3wf8aP+E61X+5a/wDfB/xrmk37f3m3dn+H
pinUAdH/AMJ1qv8Actf++D/jR/wnWq/3LX/vg/41zlFAHR/8J1qv9y1/74P+NH/Cc6p/ctf++D/j
XOUyQsvQEgjsKaV3YTdlc6UePNUJI2W3H+wf8amsfG9/eu+JLMJE22U7DlT+f8s1ysalUGfvHrUs
UzwSB0PIqk4qWuqHHzNtNVkWG5kt7eynWOYTB7mNnbzC27duY5GP4emMCnf8J/qBAINnhm2g7Tyf
Tr1rNm8mLTWnkuYkE0q4UN1bkY49Sa50aTIAoEygLIZVGPusScn8sfrWldWauVJJbHbN471NBllt
QPUof8abJ4/1GIqJDZoWOFDKRk+3NcUul3JiWOSfcNuGLSMc/MDxwMVYNnMPspEmTCzZJcgkHpzz
nj1rAk67/hPdSD7P9E3emw5/nSt471NFLMLUKBkkocD9a4ZtJuHVw8qncQSN7fMRjkn/ADitG7he
4g8pWVAxG4kbuO4xQB048e6kW2j7IW642HP86d/wnOq/3Lb/AL4P+NcQbC5iRmE+7ChSFDAuBwOn
t6U6xtLkGKaaR1IPMbOxwvzcfqPyoA7QePNTLbQLQnGcbD0/Ol/4TnVf7lt/3wf8a4iPSpYmDRzb
GUnaQzHgsScj6GnmyuV00ReaXlUliTI3zceoAPXnFAHaf8Jzqv8Actv++D/jSf8ACd6nuC7bXcRk
DYc4/OuJNlfSQFfPC7k7s27Jwfwxg+tKNNuDcrJJOCBgEh2ywyCR7dO3WgDtW8d6moyy2o+qH/Gl
/wCE51X+5bf9+z/jXDx6ZdCTzHnBfkAh2+UEqePyPHvVlbSU2vlPJ83mBmdXbLjPP0z6DigDr/8A
hOdV/uW3/fB/xpF8d6mwyq2pHTIQ/wCNcWLC7AObnJ2AZ3tzwOP0PPXmo10u6QEC4wuwgKsjAKSS
fTJ6jn2oA7n/AITrVf7lr/3wf8ajf4hX8ZYO1kpQZYFSMD35rmoxcLtD+UVHBIzmoJ7WeW4Mg8k7
CDHuJ/EEY7+vsKAOrf4iXse7fJYrtxnI6Z6fxU8+P9RUoGNmC/3cqfm+nNcdBp0kSGMuhTG3Izll
JBOf5VJPZvLIpEgZTwd45UZBwMD2xQB1g+IGoNEZVNmYx1cKcfnmhfiBqDsVQ2bEDdgKTx69a5Jb
KUWxTzAMNuWPJKDkEDJGe1Lb2ksMgYtGdsZUDJIyTnp2H86AOtj8falKgeP7I6nuqkj+dD+PdSiQ
vJ9kVR1LIQB+tcpDHcxRYxDvJLMck5Y9+g9qluUleArCUDng7jjjv2NAHSf8LBv8sN9llcZ46Z6f
xd6evjzU2LBRaEqcHCHg/nXGjTn2up8oLjCAZOPmB5+mMCrSQFZpXD7Q8gfCgc8AYP5UAdMvj/UG
27TZktnbhTzjrjmg+P8AUQ7ITZhlG5htOQPU81yiWZTycMqmNpDlRyA2cY/OoZ9NlmZx54Ctk7iu
WbIAII6Y47UAdl/wnupZUf6JlhlRtPI9uaevjnVCyjZbckD7h/xrkvszgWxBQyQoVyRjJ24/LNTw
+b5o8zZjcMbc+v8A+qgD2iiiigAooooAKjk+9UlRyfeoAik/1bfSql11tv8Aruv8mq3J/q2+lVLr
rbf9d1/k1AEw++P94fyqrdXNtY6PBdXNuJ2VkSMbcnczADntzg/hVoffH+8P5URxQy6XCLggRoVk
yWwAVYEc/UCgCmb/AER3ut9xEwuWEcqsSVYhT2PGMKeeny+1MhvfDjeRLE1lzEfKbYB8iHoDjsR0
p39laLBMkEjKXlZkjjeYngq2UAz02s3HvTf+Ec0dceYxbyk8o75j8oOQM+/JxQMWwvNFk1CSyt7e
GKUbXUGLbv4D5HHGMZweeM9qhW70SaS2kl8u1kP74RbQN6qW2MxA9mYc1YZdMsL9Vlad7lSj7m3N
uYqyLk9CSFaiPR9NS0KXEglWIAMWfGFBbaCB6byPehgV1/4RvTYRaSG2O6TeQ6bmZuuTgdfmAH1A
71em1LR0FvdTSW/+lLiKQpkuOAecdORnPrUFhpWkmJJoXeTzFSUPJMxYjKupOTn+BfyplymkRI1q
8czeQDCERXYt5nzkDH3jgZ9hTAuxanpdtbXDQywxRW0vlzBFxsckDBAHU5FUrO70K91KaCGC3Msu
JAxjGJty5z064J689aiX+xdLLW7JcIJ5FuHLK52lWUqWP8Izgc/jVuLTdL0/Uwys8cqp5u15G2Dq
u7B4zyR+NIQ1J9D1K6VIo7OeQu0ZJQZyQxPUc5w35Gn2WraIkot7Ka3R2OwLGmMkZ46exA+hFNs7
bSBfE25/e2biLJc4DEMdozwTiRvzpkmn6T9oFh5UzvhQwTeQgy5Xcw6cu1A9CE6po961wtu0k5la
GWV0LAD5wikHttK8irj+IrW3u76O7K28NnsDSSOMsW6YXrj0Pfn0qKHQtOhijS1nKK5Uf63cJdr7
8Y6E5z+BNM1Kw0ie78y7kklmuSojCyFiuzLfKB06HNAiwvifTPmE11HCwMmA7D5lQkFvpwcU9PEW
lyZ2XiEggY2nOScAAYyTnj2qu2gaO0jOSAzZjkIl+9kk4PvknH1pTp2j6jD5iTBo5DIdyTYz8+5+
/wDeH4UAaMF4J7y5t1Rh9n2guehJGcD6DH51ZrLSa2s9YKrK7vfKJAipuVQowWJHQHjrWgs8Tbds
qHdnbhhzjrigCSio/PiD7PNTfnG3cM59KiuNQtrWB5ppkCICTg5PHXgelAFmiqjalarM0Zk+7CZy
2Dt2A4J3dOKbZ6tbX0oih80OUL7XjZcAHBByOvTj3FAF2iiigAooooAKKKKACiiigAooooAKKKKA
I5Ooph6GnydRTD0NAGbqn/IKvP8ArjJ/6DXlt1/rF/3a9S1T/kFXn/XGT/0GvLbr/WL/ALtdeH+F
nHifiR0/gv8A5CL/APXt/Va6C5sfDlrLLHPYhXj2nBjb58nA2/3ufSuf8F/8hF/+vb+q11OoeG11
C5mnknUM+3YPJUqMZHzA8McE4J6VlX+M1w/8MlHhjRiAf7Pi/WsyHSdPk1lrVtKtPJ+bDK53DHqP
f2rpYYhBBHCpYqihQScnAGK4bU/CEumyf2t/aUh+yt5uI4sOx7ZPPfGeOma46vPePJtfU7aKptS5
3bTQ6f8A4RfR/wDoHw/rVGysPDd+ZBDZxjyyM+YjJkEkAjPUEqRn2p2kXt/Pfos0zTIR+8Kx4RcA
457c+9Nk8F2rQJEkzBBL5zKVyrv82SQCOzevYGtYyUlcyasTXOjeHbS2eea2t1jjOGOSefTr19qi
OneHF1E2TWSLKBySjBM43Y3dM4ycelRv4KjdZg14xaaVndmiVuoHTPRuB8wq/eeG7W+mvZpWYyXU
YjyeQgxg4HTJHemBBPpPh23khje1gMk8gjjVckkkZ7ewJzUv9gaBt3fZbXbjOd3GOmetV18HWgvp
7jzD+9kdxhfmXcrKQG9t3GAMYFQjwNafYDbGUZwgDCPA+Vi3Izkg7uRkdBQIvnw9oI35tLYbPvZb
7v154oPh/QQcG0tgQQPvdz0796rnwhbgExS7JCSxPlAqx37huH8QHTBpF8IxJfSXMdxtd7gTlvLy
wPcAk4xyQOOBQBc/4RfR/wDoHw/rR/wi+j/9A+H9a1qKAMn/AIRfR/8AoHw/rR/wi+j/APQPh/Wt
aigDJ/4RfR/+gfD+tH/CL6P/ANA+H9a1qyNdtNUnQHS7hULKY5I36YP8QPqKaV3YTdkU9O0nRdRa
4MWmRCGKTy1kycSEdcVVuNO08TvGmii2jWTyxcXCHYx9Rg8D3OK6TTrKPTrCG1i+7EuM+p7n8TU8
iLLGySKGRgQQe4q4yipXtdDj5nIv4WtrS4tYEitf30vKpCAAM7m49+effNXbbTfD11JcINP8v7Ow
SQzRtGAx5wCevBH5iora8kkeyeCCe6jtblrYyIpOV3FNxzjhe556GtC/8PR3qzfvipkuPP8AmjDq
D5ewjB68c+xqq2jW39P/ACLla5FNonh+3IElpAGLrHgZJDN0z6ZqZPDWiSIGSygZT0KkkH9arf8A
CJQCR289ipYMoKDPUEhm6sOOM9BWtpll/Z2nw2vmGTyxgMVA7+grEgp/8Ivo/wD0D4f1qvfaLoOn
wCWbT1ILBAI0ZmJJwAAOa3qpappkOr2q29zzEJFdl/vYOcUAZ8Oi+Hp7dJ47a28t0EgJJHynoeTx
S/2H4f8AtgtfskHnbDJtGeFGOT6dRVSfwXHObgteOWuI1jdmjySAAMdcYwo4x15zVmHwyLWW5min
3tJbvCisig/Nj7zDk8rx6CgESf8ACP6DjP2W2xzzu9OvftUMOk+HJ7iaGO1gZoWVXPONzDIAPc4x
+dV4PBUJ04Q3E371oDGTHGFVSdnQD/rmAfXJqT/hDLXy4QHUGKYTYEeFJCBemc/w5Bzxk0AWv+Ef
0H/n0tuhP3uw696X/hHtB4P2S2+Zdw+bqPXr0qmfBNn5iHzMqsKREFAc7TnI7c9+DmpJfCEDw3EK
3BWKeMoR5YyvzFgFPZecFe4oAkn0Xw7bW8s8ttbLHEnmO2c4XGc9aWLQtAlRGFnAN+MKxIOSM4xn
r7U2DwvFDa3luZV8q6gEJRIgAMDG7knJ6flRJ4Vt3uBKsmz960jDy15yVOAexGwAH0zQBKvh7QXb
atpbFueA3PHXvUN3o/h2ytJbme1txFFw5GTg9MYHfkcU+y8KWlhcQTQnDwlCCEUE7VZTk++/n6Ck
TwvCI9QSWdpft0qyOWQcbWyPr6fhQBOvhjRmUH+z4uRnkGqN1p/h2zmaKbT8OBlQInO/kDC4+8eR
wPWtqO3uEmDNds8YJ/d+WoGOcDPtkflVK60Wa5vZbgXxViVMX7oExEdgc8jrx7+1AGb5Phb5ttqj
YIC4jb95n+7/AHsd8dKs3Wk+HrOaKKayjDS9MIxA5AycdBkgc9zTJPB0DRLELltkWRAHjVhGG+91
6k54Pbirlx4fjkKeRcTQgDD5O8tyGHLZxgqDx70AVY9L8PSWMt39gVYodwkDRuGUjrletLDpXh+e
cRJYLuaITKTGwDLxyD3xkZ+tXrTRxBa+XNMZJdjIZFBTO7qSucE+5psGjG3ufOS5IK24t02oARgD
kn+LGOPTJoArWeiaDfQmSHT0AVijK6MrKR2INOufD+iWtu8z6arKvJEaMzfkOantdLu7W1WJdQII
zllhX5ic/Mc55yc/hVnUbOS+sWgjuDCzEbm27tw7gj0PShgYXkeFsM32VNq7cMI3w24gDB78kA+n
ercGh6BcvOsVjGTA/lyZVhhsA9+vBHSpB4eUiZXuWKuMIFQKEywZsfUqPoKurp0QupZ2ZyzyiUAM
VAIUL26jjvTAyINP8N3L26RWaFrjf5eY3Gdhw3Xp070Taf4at5p4pbSNTBGZHYo20AAEjPQkAg4H
PIrSXR4x5IMrkRvK+M4z5mc8jkY3dqqXPheC5kYNdXKQ/eREcgq20KTu6nhRwaQxg0jw801tELOP
fdIXiGxvmAGevbj1q0PDGjgg/YIsj61L/ZW2GzSO4kV7SMojkBiSU25Oe/erNvDNEzma5MwPQFAN
vJ9PqB+FNiJ6KKKQBRRRQAVHJ96pKjk60ARyf6tvpVO6623/AF3X+TVbk/1bfSql11tv+u6/yagC
YffH+8P5VDNp41PQVtS4TeAQ5XdtIOQcevFTD74/3h/KoLm1nvfD4htX2TMo2kuUHBzyRzj6dfUU
AVLbwpb2mqC8WfdL55mBdAWOQ2QT/wAC4wBjFVJvCSXEV4t3dpD9snfARFG5WdmAJ6semPTFTQeH
b9dYjvbq7+0CO5MqhpmAClWGAuOMZA6nOO1V5NB1O+aeSSTAF2zpHLcSDeodscj7nykAbeo60DLu
paVDcXbxXN5FFG8MYUFwJCV3rnB7fvBz603/AIRK1eMPBOAz5beYlZXyxbLDo3UgZp11pF5PLBGX
3lbaJWuGPBdJFY575ODUK+H9URCx1FpJGG1w08gVwPL4/wBn7r8jn5qYEcHgu0ILw3hdGCfPtDNl
AAOc42/KMjHqOhq1fafG13ePNfW9uRtmUsQdqlDG29TxtPOOf5VRh8L6vboEi1IxgQhE2SsFiOck
7cfN9SR1rRutMupr4vGiAokDoXbKMyF8qT97+IEHHXBoAorpGmW/lkazGsE6CIqzpmZcJwG99o/O
tC40n+07qJ9T8hHUjbCjeYrqpzk7lHc/yqk3h7VH2+ddQ3BaF4XMxY7QyqCQMc9PbPtVu60+41J4
FQT2q2w8su7ANIu5CdpViRkIR260AVl8KWQ22sd2DLGd8ilEZipVVzjsf3fDduavX1nCt7IH1EW6
Xy+XJCSoMh27QVJ5Bxj16Cs4eGL6KOYx3mZZXXeTNIpYKhVcsOcgkH3xzWq1jdx6gLiFoZRJCsMr
S5DLtJO5cA5znkcdBzSYFGPwjEjQs1xlkOW2wqoPKkbQPuH5RkjrzUU3hKzhWHfdrDFHGsYzGgJI
Qr973Bzj15pU0DVViiVr7JV8t+/k64A8zPUnIJ2fd5plx4a1GUwYvQxQl97zSZV8ucgdD95fpt4o
Akl8G200GyK5ZEcqz7UXEhDOwJ9/n6+wpG8GWzuGEyMFR4wrRZABZj0BHPzEH1wKbc+HtWa2mWDU
mEswIZmmfj5sqV67cDjgc0ieGtQhmQxXrJEJZZHWO4ZS5cg7jkHnqMdO9Ai1qWkW7ppsN3qCxGMN
AjMqh5mZCuAf5gdaYvha1g1CzdLnyxDL50cAVQCQqqSB+HP1qR9HvmtdLAliF1aSZebex+XuBnO7
I45xzzxVJ/C+o5tyt9vaMffeeTcrFVDMD1PK529KYF5/Cdm9y8+7EryNIXCLuyZBJ19sY+hqpH4I
t4rfyVuCqbHRmEfzOrDHJJPpzgDNW9R0K7vb2aZb6WNX4VFmdQo8th0Bx98q34VWXQdXFy8r35lL
TpIN07BNo6jYB/7Ng8E+lIbJ4dJtorny0uIBa3UMqxKrAM29t52jpgD0pdNgig1YN/aFtcMUeNiH
Ad5cgsNo4GFUcdai07RLrTJrCLe00MbqxO8kRkQsrfeOcFiMAfpTrTR7q01C0Z1R0STBaM8BFSQB
mzzuJfoM9OtMTOhooopAFFFFABRRRQAUUUUAFFFFABRRRQBHJ1FMPQ0srYYDFVr27+yQCRk3ZdUx
0+8wH9aAKuqf8gq8/wCuMn/oNeW3X+sX/dr1LVf+QVef9cZP5V5bdf6xf92uvD/CzjxPxI6fwX/y
EX/69v6rXXXettbT3cSWhla2QSHEqjKn+R9Aetcj4L/5CL/9e39Vrt30m3kuZJ5DI7ybR8znCgEN
gDsMgZrKv8Zrh/4ZaidpIUd0KMyglCeVPpWDDrayeITaPqFs8Tl0EJAByOgB7n6/hXQda5S98CWB
dLmF7p5IZFkWMzYBAOcAgZ+nNcdWM248vc7aPs0pe0+R1S7cbVxheMDtWXB4jtHhMtyRbKZjCnmM
CS3oQPun2NVdJa5k1Yzw2YhspItr9VIYHgkHqeT0q0/hqwluluJRNJMJBJueUnJGCB9BgVsYrUsH
WtPW4hgN3F5sxAjXPLZAIx+BH51Uh8TWrXk8E6mARyGNXLBt53lMYHIJI4B6ipo/D9hDNbyxRsj2
5YoQxPDNuIOe2fyqVdHslzthAJn+0Eg4JfJOSe/U0AUv+Es0s3Xlx3KPEsbyyTA/IgUgde5JIxVj
/hI9Jyn+nw/O6opzwWIBA/Ij8xUSeFtNS1a3Eb+UV2AFz8oyGGPoVGPpTz4csD5R2yb4n8xX385I
AP4EKPyoAlh17TbhUaG7Rw7iNdoJJOM9MdMEHPSltdc06+mWK0u45nbdgJz93r9ByOajTQLKOSKS
JZY3iCqrLIQSqgDafUYAyPaktPD1lYyQNAJVFuSYk3/KuRjHuAPWgDUooooAKKKKACkZgqlmIAAy
SaWsnW9FfVVUwXcltIFMbEchkPUEU4pN6id0tCXR9Ql1NJ7jaq2xkKwHHLKOCT+NVr2fU98pmjFv
Zq5Akgk3vs/vsCBj6DOPWtW2t47S2it4V2xxqFUewqQ8jnpVxmoyvYcdNzCmsyl5ZJFe3T+c4ZmM
p5Vfm/Lj8qnj19Ea6+3w/ZI7eUQ72cPvbaG4A56EH8/SqFst8XtzBbhEtbpkVZ5AjeUWKk4Gex46
ZGOma17nRrS5Em4SKzy+cXSQqwbbsOCOmV4q671Wt/8Ah/8AIuVm9CKfxDYQuUWdZGV1R9p4UHvn
oQO+OlX7e4ju7dJ4G3RyDKtgjI/GqA8O2AcsEkA3BkXzDtjOcnaO2SAT61csrOLT7RLaDd5aZxub
J5OetYEFiqeqagumWZuGjLjcFxkKBk4ySeAPerlQXlqt7bNC7yIrdTG5U/nQBXXWrDz5IGuY1niX
dJGTyo27v5A/lQuuaa0NxKt5EY7YhZmB+4TwM/jxVeLwvpkLOUhYBmRsbzgbTkAe3J498dKJvDtu
bC6trV3gFzIJGIOdp37jj0yc/nQBI/iPSY03vfRKuFOTkY3EgfjwePY+lQW/irTJovMluEgDNJ5Y
kOCyoSC2Ow4NSP4a094thSTduV95kJbcM/Nk9zubPrmiTwzp0pUmNwQjRnDn5lYkkH8WP50AOfxL
pEfmBr6IGPG5ecjIyOOvQH6VJNr2m26yNLeRKsZVWY9MnoM9CfpTB4fsRdSzhHDSuZGAc43FSpP4
gmo28NWDReViURh1kRRIcIwGNyjsSCc+uaAJpddsI7dZxKXiacW4aNCw3k4/EZ71JFq9jNbzzxXK
NHb58xgD8o9fce4qNdEtVhkjzL+8mE5bzDkOCCMenQcU1dAsksprUCXypQAcyElVX7qqewHYUAMn
8Q2kc9pHEwlW5iMyyhsIEyoBz7lhxUllr9jfAKsypN5PnNCx+ZF96d/Ydl9nhh8tvLhi8pBvPC5V
v5qKba6BY2Usj28bL5kfluu7IYYxn64AFAFy0n+1WsU+woJFDBT1APSqN9rLWd59mFo8sjKDFtdf
nOQMH+716nrg1Lb6UkCRAz3DGMAD96wBxjHAOP4R+vqaZPodtcTzyvJchpiGIWYgKwxgr6Hj9T60
AUH8X2yxrJ5EgSU/uGZgBJj730x71futZit54o40M4f77RsCIwSFGfXlhUZ8NafhgqSoD90JKw2D
uF54Byc+uamn0OxnKfuvLCZ4iYoGzjrjryAfqKAGwawsthNO0DCWHfmAOpZtvXac4NLa6ut1diBY
SN1us6nep4OOCOoPPHrg1JbaVb21sIQHkAQoHkO5wp7buuKRNIt0k3gykiHyUBkOEXAB2+mcDn2o
Afp18b+3aQxGJkkaNlLBhkHsR1p97cNaWcs6x+YYxu27gvHfk8Cq0Oiww26wrPd7EXaP37ZA59D7
/wAqsXtjHf2vkSvKqhlYGNypyDkc0MDN/wCElTY8n2OfZ8pQ5XLDcFY4zxtLD+laEGoJNPcRMjRN
DL5QDkfOdoYEc+hqFdCsx5u4Sv5uN26QnHIJx6ZIBPrVpbK3Ezy+UrO7iQlhnDBQuR6cAUwKUGtp
M9sGtpYhOZRucrhDGSCDg+x6UyfxDDbzTKYXeONGKSIQfNcKGKKM9cMMfjVxdMtV8v8Ad5EbOygn
Iy+d2fXOTVefw7plzI7T2yyKwx5bfcU4xkL0BwAMj0pDJV1NWmsY/IkAvELq3GEwu7B5zmr1Uzpd
t5NvEqsi26GOLYxBUFdvBHtUsFqluzlXlbd13yFsck8Z6df5elNiJ6KKKQBRRRQAVHJ1qSo5PvUA
RSf6tvpVS6623/Xdf5NVyT/Vt9Kp3XW2/wCu6/yagCb+P/gQ/lTJUuf7IEVpOsNyAMMQD35HIIGR
xnBx6U7+L/gQ/lT6AMuG21qTU4bi71CNbdJ2byIsD5NrBQTj5v4fTvUiw6sb1XmuIJIPPLbGC/Ig
ZsbeM52kZz3rQooAxG0m/g1Bbu0liVv3ysDIcESS5yR6hcH8MVFbaVrdtbWtnFfrFaQhFJDhpG2y
KxO4juu4EHP610FFAPUxbPTNTt2thNcpNFCzOF34KlhIMZxyOU6+9QW+i6tFbRQyXiShZFbLvkoB
5XCnGcfK/Hfj1roaKB3M8Wd/c2T219esQ6lGePYM9eegI7cfhk0yG31eKzljjntoHVBHAkQHljnl
yCCc/wCznHb3rTooEYkdr4gh+aK5tVd2MkuTkOTGq8DHGGGaZb6RqlnqU18lxDNK/J3EKX+WPgkD
HJVscfL+Nb1FAGM+n6vG8zW91D5mA8cjtkCRyokO3GMABsf71TPaavN5Rl1IBo54yREFVXjA+bIw
TknPGcVp0UAYl3Y65eafJby3sJEkLbx8oy5UfLkD7gbPvjvU0GnanZokFtfxpBxkIqjZl2L7QwPA
G0AHPetWopWYGNUYLuJBJGexNA7lCG11aTUIbi8uo8JFIm1CAoJVMHpknIbr7YqNNFkbSbiykKor
7ZECuGHmBVznIOQWBJ/+vWliX/nsP+/f/wBemTS/Z4mlnuo4o1+87qAB9STQIo6npN1fyJKkscUo
W3+dHI2lGZmx7ZK/WoY7DXI7ie4huIIpLqaOWYGTeFAAUooI9O/HI960/PXbG32yLbIMocD5h7c8
9R+dSYkP/LZf++P/AK9AGINF1lbWVDqAlMsCRSB3GWIjILbgMg7tv4ZJqzLpupHVLm5iukEMjZED
OGTrHyQR1wrfpWliX/nsP+/f/wBenQszBwxBKtjIGOw/xoHcoWFrqtpbxwyXisiRIF2FTtIXBHIy
eec5/Ad4Rp+rQsy2d1BDiURpJIfMIg+Zuh/i3ED6CtmigRlTWutO0U6agomRZsxAqIsnhP4ckd+T
1pLnTdSvkkhur5HgUZiBVT5jBiR5gAGRjaMDFa1FAGZ5euMkSC5t4F3HeUwxVdwwFyOcLkc0Gw1G
90e7s9SvEd5o12ugA2tj5hgAZXI79QTWnRQBkxw67HGVjntYl2CNIlxsi+RRuBIycNu4PbH1p1zY
X9wNMumlge+tkIkDfcLFcFl9CDj8MitSigDGSy1v7XBPJfRs0abSTt+fJjLAgDGOHwRz05q3o2mt
ptw7MYwjRBAFbPSRyP8Ax1hV6incCz5if3hR5if3hVaikBDqdxHgwvbT3EciFWEUe4Y6EGufstMt
dL0tdP0vT9QRWuEkZ51LE/OCSWJ7AfpXTUUAUtV/5Bd5/wBcZP5GvLbr/WL/ALtepap/yCrz/rjJ
/wCg15bdf6xf92uvD/CzjxPxI6fwX/yEX/69v6rXSarrt3YXc8EUMUjBVaEFWyf73H8XTqOneub8
F/8AIRf/AK9v6rXcS6Zp8zStLa27mYgyFkB3Y6ZrLEfGbYf+GTYS9ssOAY54+QG4II9fxrhrq4vL
bTrrRreeeRYmWGYjO6NCT8wkJGAVHI7ZOOMV3M7OlrJ9lEZlCny1Y4XPbPtXN/8ACI5+xJPci4Rg
w1AuSPPz8wwM8Dfk+vPWuaUbyTt+PTr66barW2psjT0aXVLp2nvVghtNu2GJVJdv9osf5YHrx0ps
WtyfZheTRK0M0nlW8MIzKWyRg5IGeCe2Pep9L046V5sSXbS2hOYopAMw/wCyG7r6A8j1qR9K02Uz
F7S2YzkGXKD5yO5qoppWbAyD4whjkuJJYibWNN6lBl2+5j5T3+Y8e1Wz4os8v+5uSobaG2AK2G2k
gk8AHqTir0umadOpWW0tnB6gxr7f4D8qhh0PTIRN/o8TmaQyOXUEk5yPwGeKYMii8S2c9ncXUUdy
0cMoi/1RHmEttG3PUZqJ/FNr5bFUnXavzO0eVR8E7Dg5zgHpx71cuNI0+4tZrcwxpHM6ySBABvIY
Nz+I5p40zTgysLS2ysflA7Bwn936UAZ3/CVwPcRRRWd2+92BO0fdAc7gM5IzGwx1rXsrtL6zjuYg
QkgyAxGR9cEio30+wcKGtrc7enyDjr/8U35mpoIoLaFYYFSONBhVUAAUAS0U3cv94fnRuX+8PzoA
dRTdy/3h+dG5f7w/OgB1QzXUNuG82VFKoXIJ52jqcVJuX+8PzrO1fRbPWUQXJZWQ8OjYOO4+hpxt
fUTvbQTQbm5v7aW9nYiKd90EZH3UHA/PrUN7Y6g7yyzzpc24clbeNChCfXJ3N9ePTFa8YjijWOPa
qKAqgdgKUuoGdw/OrjU5ZcyHHQwZLDT5LrTRbQp5cr+bu67to3D9QKafFSW+6a7GIXz5EUUbNI2H
2dfuk57dsiooYLhpk3XMNs0F0ZEjCtKPLZ+meACwPvtz3xW0+l6dI0zPaWxabHmEoMvjnn8auu7t
a3Lk0yk3ii0B+WC7bLhI8Rj942QpAyexIBziox4vsSIsQXheZlEcYhyzAruDYB6Y/H2rTTTrCKVp
EtrdXYqSwQZJXp+VI2nWDhA1tbnYVK/IPlwMDH0FYEFbSNdj1VFzby27+SkrCQrgbskDIPJwM1Nq
17Na2sTWgiaWWdIVMmSo3NjPFPXTdPWMxi1tghOduwY7j+RP5mnS2NlPa/ZpYIHgzu8sqNuc5zj1
zzQMxf8AhLk8oReQxvFC+ZtBMS5fZ9/3wSKUeNLNsyLbXf2URNJ5xjxnDKoCjqclhg1sNp1g0iub
a3LIoRTsHCjoPoKZ/ZOmYI+x22G3ZGwfxfe/OgRTv/ESW1nbyw28zSThWCOm3YpdVJbPT73vRJ4p
skCYjuX3oJMKg+VdpbJ57AVefTrCRYFktoHEH+qDKDs+np0H5VXk0DSpLiKX7LADG5k2qqhWY9yM
cmgCvY+I0uZhC0bNM0hVY4l7BmG4kkDGFyfr3qE+M7ISSYguDBEjs8oUcFSoAAzzu3jBFa7adYOQ
WtrckOHB2D7wzg/Xk/nTBpGmBNgsrUL83AjXHzdfzwPyoGU4PESXepWttBbzKkwbe8qbdpChtuOu
eRntUa+L7BhF+5uw0zqsaeTlmUjIfAP3cD6+1aUWnWEE6zxW1ukyrsDhRuA9M0Nptg4UNa25CYK/
IOMdMfTJoEVbHxHaajeC2t0nL7nBJUbQF285zyDuGMZzUK+LLJog4gu/mG8KYxkx4JL9emAff2rS
t7GytDm2t4IjzyigdcZ/kPyFVrXQdLtLOO2W1hdEYPl1BJYfxH3oA0FlR8bXU56c1k3+qXlvfm3t
1t3VtqK7bsRucYDHvkZOBzwPWtBLSzjlEscEKyAk7goB5znn8T+dRy6Xp00ksktrbu8wxIWQHf06
+vQflQBg/wDCW3LQxyJaoRcAmILligTO8sMjPQkYIrQutfAmi+yCN4RzK0gZTgsq/Ln3YHPSrz6Z
p0nmb7S2bzCpfKD5iOmfpUs9paXTI1xDDKY87C6g7cjBxQBQg1adrCUyJH9qCu8QwyxyKvRs4OAa
isfESXuqLZqYAwtPOk/ecq/ynGPQButalvaWtpb+RbxRRw8/IoAHPtTjBblQDHFgIYwMDhT/AA/T
gcUAV9MvZbm0Ml0I1bcwVlyFdezAHnBqTUbiS2sZJYWjEgHy+YCQT6YHJJ9qjTSdNjjEaWdsEAwF
2DGOf8T+dTXNta3kHk3MUUsWQdjgEZHShgYreIb1UkdraAYxhC5ymHVHB9TluPpWlBqZN3cwXCqh
S4EMWzc27KKwzxwefpUqWFjH5my3gHmBQ+FHzY6Z+lTqsSM7KEDOcsR1Y4xz+AFMDJg1m4ZrQ3EU
KpK06ylGZipjJxgY54X/AOtVa+8VCyaWQiH7OQyQF2KM0gVWG7PQHd+GPet1YbdSpWOMFCWUgDgn
qR9c037La/aHn8qHzpF2O+0ZZfQn0pDKceqySPpZCwmG8iLs4c/Kdm7jtj3rSDK2drA49DUT29tI
io8UTIqlVUqCACMEfTHFENvbW7MYYooy33igAzyT/Mn86bET0U3cv94fnRuX+8PzpAOopu5f7w/O
jcv94fnQA6oZWw2MVIZEAyWUD3NZeq3tkFe3uJZQJUwTCHyAcjIZehoAnu7pbaJS6k+Y6xjHqxwK
iuutt/13X+TVgWUdtZ6baWFtd6hfSLcpI812JHdueSSRgADtW/ddbb/ruv8AJqAJf4v+BD+VPph4
DMSAFIyScCm+cn/PSL/vsUAS0VF5yf8APSL/AL7FHnJ/z0i/77FAEtFRecn/AD0i/wC+xR5yf89I
v++xQBLRTUJlz5ZVsddrZxTTMgODJFkf7YoAkoqLzk/56Rf99ijzk/56Rf8AfYoAloqLzk/56Rf9
9ijzk/56Rf8AfYoAloqNZVdgqvGWPQB6k2Sf3P1oAKhnOHh/3j/I1Nsk/ufrTXgaQAPEGA55oAj3
GqWsWkuoaZJbwsEkZkZSWK/dYN1AJHTrir/2Jf8An3T8qPsS/wDPun5UAc5caJqFzfi4a6VcDAPn
SMwB2ZXoB/C3IwTu5rV0i0bTtJtrR9u6FAmVYsDjvk81e+xL/wA+6flR9iX/AJ90/KgBu40W/Pm/
9dD/ACFO+xL/AM+6flT0gaMYSIKOuBQAtFGyT+5+tGyT+5+tABRRsk/ufrRsk/ufrQAUUbJP7n60
bJP7n60AFFGyT+5+tGyT+5+tABRRsk/ufrRsk/ufrQAUUbJP7n60bJP7n60AFFGyT+5+tGyT+5+t
AFLVP+QVef8AXGT/ANBry26/1i/7tep6sjLpN3uGMwyf+g15Zdf6xf8Adrrw/wALOPE/Ejp/Bf8A
yEX/AOvb+q1v32s3Y1WSysIFcxDdIzDPvwPxrA8F/wDIRf8A69v6rW9qNhcXkjyQwGGSThiJl5FT
Vt7TU1ofwx9vqc16HktwnmRxfMpPy53dfyqHTfEn9tTyQWYjR4V3TF+f++R3+tRjRp0sJbSGNkEs
WxpBMu4ndknHpjilGi+RJYSWdn5EtoCm4Sr+9QjlW+p5z61xzUuf3dj0aLoKi1U+Lp5ade99vLcv
T6xHp9jab0luLiaNSkMS7pHG0Fmx6Duaf/aCzrBdWZNzE0MjoseMyEbeOe/Uc0y1he2YSjT1+0GJ
InkEy5IUcD6UkcDwXXnQaekYcu0gWZfmZtvP/jta+7Y5Nbjl8QWkkdq1vunkuX2pAijeCD824H7u
3vmql/qN3ZabayW88ZlkyqwmAyyTtk4C/MO3XNXIYhBeS3cWlxpcTYEkglXc+OmaZbQSQtHK2no1
ykZj8zzlyFyTgU7xTFZtDNPvp7u3tp2uIrne7/LFF5WCEPyMCThgR3p3/CRWpskmVZGnd/KFoFHn
eZ3QjsR69Mc0vkSJei5h09Ed23SkTLlztKg/XmqKaVqC6ib7zs3BUI0nlQhmXP3c01ytu4nzJaGl
9vaARxBGluJ5pViTIA+UknLHoAPr04FQ22qPdTtbyNCLi3ulVxA25WQgkHP6EeoontZbuykt57Qg
NI0iuk6bkJYkEE9+cfnUVvphtJVmhsi1wWXzJpJ1LOq5wOOB16AVmVrczv8AhYNmPGT6BJbSptcx
faCRjfjpt9PeujgZ2a76syzEKCf9leKoT6Zb3Gopfy6RG10ox5vmqCR2z61ftFkXznlUI0kpcLuD
YGAOv4UlfqaTcXblVjNXxNaLF51xiCEICWYkndgEqAB1BYD6mrMGvadctGsVwC0v3F2kE8gf1FPf
RtOkjZGtY9rM7kAkfMxBY8HqSAfwpyaXYxzrOsC+cpDCRmJbIXaDknng4pkFmRxFE8jBiEBYhVLH
j0A5NVdK1e01uz+12Du8BYqHeJkyR1xuAzVzI9aBgDAwB6CgBaKTI9RRkeooAXJ9aKTI9RRkeooA
WikyPUUZHqKAFopMj1FGR6igBaKTI9RRkeooAWikyPUUZHqKAFopMj1FGR6igBaKTI9RRkeooAWi
kyPUUZHqKAFopMj1FGR6igBaKTI9RRkeooAWikyPUUZHqKAFopMj1FGR6igBaKTI9RRkeooAWiky
PUUZHqKAFopMj1FGR6igBaKTI9RRkeooAWikyPUUZHqKAIrgA+UGAI8wcEexrPur46dfxi6ii+w3
BWOOVV5jkPZh3B7EdO9X7nO1CoLYcEgcnoaotaJJqS3kwnkaNcQxsnyxHuwHdj6npVRt1E79C8AF
ncKAP3XOBjvSXXW2/wCu6/yamxktK7FWUeXj5hjvTrrrbf8AXdf5NUjJZP8Aj3f/AH0/mKN1JLk2
8gAydynA69RUO9v+ecn/AHzQBBf6tFYXNpC4Um4faSXC7FyBu568lR+PtUP/AAkum7c+ZMeSABA+
WxkkgY5A2tz04NSz2VrdSGS5shM5XZl48kDOcD059Kz4/DVkkUEbR3DiN2dyd2ZMhhg88D5jwOPz
oAv2WtW16zIDtkErRhQCdwBbDZ9CFJ9q0N1ZkOnRQX/2qOFlIRkRVjxt3NuY575P5Vc3t/zzk/75
oAtWhzcTf7q/1qCA/uV/H+dS2JxJKzAqCFA3cZ61WQui7THJkE9F96AEvLx7doIoYllnncqis21e
ASSTg9h6VWm1+ytZnt7hmFzGF3xRxs5y3QDA5qa6t4ryMR3EEjqrBlwCpUjuCMEH6VXTSbJJzOtk
/mkhtx3HkdD16/zoAWXxHpsNs1w8zeQu0eYI2KksAQoOOWwQcdqtWF+uoW7TIuFErxjnOQpxn8ap
/wBj2OwoLKRUO3hS4AK/dIweCMDkc1agjS2QpDBIqlixG0nJJyTQBazmWH/roP5GtCsuMs08XyOA
HySRgDg1pb1/vL+dADqKbvX+8v50b1/vL+dADqKbvX+8v50b1/vL+dADqKbvX+8v50b1/vL+dADq
KbvX+8v50b1/vL+dADqKbvX+8v50b1/vL+dADqKbvX+8v50b1/vL+dADqKbvX+8v50b1/vL+dADq
KbvX+8v50b1/vL+dADqKbvX+8v50b1/vL+dADqKbvX+8v50b1/vL+dADqKbvX+8v50b1/vL+dAGf
r3/IKuf+uEn/AKDXk11/rF/3a9Y11gdKucEH9xJ0/wB2vJ7r/WL/ALtdeH+FnHifiR1fgRQ+quG6
fZv6rXd/Z4/7orhfAX/IWf8A69v6rXf1lX+M1w/wEX2eP+6KPs8f90VLRWJuRfZ4/wC6KPs8f90V
LRQBF9nj/uij7PH/AHRUtFAEX2eP+6KPs8f90VLRQBF9nj/uij7PH/dFS0UARfZ4/wC6KPs8f90V
LRQBF9nj/uij7PH/AHRUtFAEX2eP+6KPs8f90VLRQBF9nj/uij7PH/dFS0UARfZ4/wC6KPs8f90V
LRQBF9nj/uij7PH/AHRUtFAEX2eP+6KPs8f90VLRQBF9nj/uij7PH/dFS0UARfZ4/wC6KPs8f90V
LRQBF9nj/uij7PH/AHRUtFAEX2eP+6KPs8f90VLRQBF9nj/uij7PH/dFS0UARfZ4/wC6KPs8f90V
LRQBF9nj/uij7PH/AHRUtFAEX2eP+6KPs8f90VLRQBF9nj/uij7PH/dFS0UAQvFFGjOy4VRk1D5t
v/zzk/79mprr/j0m/wBxv5VV3UASebb/APPOT/v2aPNt/wDnnJ/37NZ+p3r2sMPlvHGZpli82QZW
POeSOM9MDnqRWefEf2W8ltrgLcbGUCSLCgrtQk4J5OXHAoA6Dzbf/nnJ/wB+zR5tv/zzk/79msK3
8TxXF/BaLaz+bKWDYIIiwcfN+PbtWzuoAmjMEr7FRg2M/MpHFS/Z4/7oqtbnN4v/AFzb+Yq9QBF9
nj/uij7PH/dFS0UARfZ4/wC6KPs8f90VLRQBF9nj/uimyWkUhjLbv3bbwAe+CP61PRQBH5EZ6rSf
Z4/7oqWigCL7PH/dFH2eP+6KlooAi+zx/wB0UfZ4/wC6KlooAi+zx/3RR9nj/uipaKAIvs8f90Uf
Z4/7oqWigCL7PH/dFH2eP+6KlooAi+zx/wB0UfZ4/wC6KlooAi+zx/3RR9nj/uipaKAIvs8f90Uf
Z4/7oqWigCL7PH/dFH2eP+6KlooAi+zx/wB0UfZ4/wC6KlooAi+zx/3RR9nj/uipaKAIvs8f90Uf
Z4/7oqWigCL7PH/dFH2eP+6KlooAi+zx/wB0UfZ4/wC6KlooAi+zx/3RR9nj/uipaKAIvs8f90Uf
Z4/7oqWigCL7PH/dFH2eP+6KlooAz9XhRdGvSFwfIf8A9BNeR3X+sX/dr1/WP+QLff8AXB//AEE1
5Bdf6xf92uvD7M48T8SOt8Bf8hZ/+vb+q139eN2upPa4a3lmifbtLRttOPwNWf8AhIb3/n/vf+/p
/wAadSi5yvcVKuoRs0et0V5J/wAJDe/8/wDe/wDf0/40f8JDe/8AP/e/9/T/AI1H1Z9y/rS7HrdF
eSf8JDe/8/8Ae/8Af0/40f8ACQ3v/P8A3v8A39P+NH1Z9w+tLset0V5J/wAJDe/8/wDe/wDf0/40
f8JDe/8AP/e/9/T/AI0fVn3D60ux63RXkn/CQ3v/AD/3v/f0/wCNH/CQ3v8Az/3v/f0/40fVn3D6
0ux63RXkn/CQ3v8Az/3v/f0/40f8JDe/8/8Ae/8Af0/40fVn3D60ux63RXkn/CQ3v/P/AHv/AH9P
+NH/AAkN7/z/AN7/AN/T/jR9WfcPrS7HrdFeSf8ACQ3v/P8A3v8A39P+NH/CQ3v/AD/3v/f0/wCN
H1Z9w+tLset0V5J/wkN7/wA/97/39P8AjR/wkN7/AM/97/39P+NH1Z9w+tLset0V5J/wkN7/AM/9
7/39P+NH/CQ3v/P/AHv/AH9P+NH1Z9w+tLset0V5J/wkN7/z/wB7/wB/T/jR/wAJDe/8/wDe/wDf
0/40fVn3D60ux63RXkn/AAkN7/z/AN7/AN/T/jR/wkN7/wA/97/39P8AjR9WfcPrS7HrdFeSf8JD
e/8AP/e/9/T/AI0f8JDe/wDP/e/9/T/jR9WfcPrS7HrdFeSf8JDe/wDP/e/9/T/jR/wkN7/z/wB7
/wB/T/jR9WfcPrS7HrdFeSf8JDe/8/8Ae/8Af0/40f8ACQ3v/P8A3v8A39P+NH1Z9w+tLset0V5J
/wAJDe/8/wDe/wDf0/40f8JDe/8AP/e/9/T/AI0fVn3D60ux63RXkn/CQ3v/AD/3v/f0/wCNH/CQ
3v8Az/3v/f0/40fVn3D60ux63RXkn/CQ3v8Az/3v/f0/40f8JDe/8/8Ae/8Af0/40fVn3D60ux63
RXkn/CQ3v/P/AHv/AH9P+NH/AAkN7/z/AN7/AN/T/jR9WfcPrS7HrdFeSf8ACQ3v/P8A3v8A39P+
NH/CQ3v/AD/3v/f0/wCNH1Z9w+tLset0V5J/wkN7/wA/97/39P8AjR/wkN7/AM/97/39P+NH1Z9w
+tLset0V5J/wkN7/AM/97/39P+NH/CQ3v/P/AHv/AH9P+NH1Z9w+tLserzoZLeRF+8ykD8qo+Rc/
88R/32K82/4SG9/5/wC9/wC/p/xo/wCEhvf+f+9/7+n/ABo+rPuH1pdj0h7WaRCklujo3BVmBB+o
pn2Bvl/0OH5CCv3flI4BHHFedf8ACQ3v/P8A3v8A39P+NH/CQ3v/AD/3v/f0/wCNH1Z9w+tLseij
TyuzbZQDYSUwF+UnqRxxUnkXP/PEf99ivNv+Ehvf+f8Avf8Av6f8aP8AhIb3/n/vf+/p/wAaPqz7
h9aXY9OtYZlud8iBVCEfezzkf4VdryT/AISG9/5/73/v6f8AGj/hIb3/AJ/73/v6f8aPqz7h9aXY
9boryT/hIb3/AJ/73/v6f8aP+Ehvf+f+9/7+n/Gj6s+4fWl2PW6K8k/4SG9/5/73/v6f8aP+Ehvf
+f8Avf8Av6f8aPqz7h9aXY9boryT/hIb3/n/AL3/AL+n/Gj/AISG9/5/73/v6f8AGj6s+4fWl2PW
6K8k/wCEhvf+f+9/7+n/ABo/4SG9/wCf+9/7+n/Gj6s+4fWl2PW6K8k/4SG9/wCf+9/7+n/Gj/hI
b3/n/vf+/p/xo+rPuH1pdj1uivJP+Ehvf+f+9/7+n/Gj/hIb3/n/AL3/AL+n/Gj6s+4fWl2PW6K8
k/4SG9/5/wC9/wC/p/xo/wCEhvf+f+9/7+n/ABo+rPuH1pdj1uivJP8AhIb3/n/vf+/p/wAaP+Eh
vf8An/vf+/p/xo+rPuH1pdj1uivJP+Ehvf8An/vf+/p/xo/4SG9/5/73/v6f8aPqz7h9aXY9bory
T/hIb3/n/vf+/p/xo/4SG9/5/wC9/wC/p/xo+rPuH1pdj1uivJP+Ehvf+f8Avf8Av6f8aP8AhIb3
/n/vf+/p/wAaPqz7h9aXY9boryT/AISG9/5/73/v6f8AGj/hIb3/AJ/73/v6f8aPqz7h9aXY9bor
yT/hIb3/AJ/73/v6f8aP+Ehvf+f+9/7+n/Gj6s+4fWl2PW6K8k/4SG9/5/73/v6f8aP+Ehvf+f8A
vf8Av6f8aPqz7h9aXY9boryT/hIb3/n/AL3/AL+n/Gj/AISG9/5/73/v6f8AGj6s+4fWl2PW6K8k
/wCEhvf+f+9/7+n/ABo/4SG9/wCf+9/7+n/Gj6s+4fWl2PW6K8k/4SG9/wCf+9/7+n/Gj/hIb3/n
/vf+/p/xo+rPuH1pdj1uivJP+Ehvf+f+9/7+n/Gj/hIb3/n/AL3/AL+n/Gj6s+4fWl2PW6K8k/4S
G9/5/wC9/wC/p/xo/wCEhvf+f+9/7+n/ABo+rPuH1pdj1uivJP8AhIb3/n/vf+/p/wAaP+Ehvf8A
n/vf+/p/xo+rPuH1pdj1uivJP+Ehvf8An/vf+/p/xo/4SG9/5/73/v6f8aPqz7h9aXY9O1j/AJAt
9/1wf/0E15Bdf6xf92r769dyIySXt4yMMMpkJBH51m3Eyu4IB4HetadPkTMatRVGmj//2Q==
------=_NextPart_000_097F_01CFE23D.E451EB10--
No subject
Moderator: GiD Team
[GiDlist] problems in meshing
Hi, I'm trying to mesh a structure mainly composed of cylinders, this is quite complex, i tetahedros by triangles in the process of creating the mesh I have problems to solve the problem, the software gets stuck and finishes closing. I would greatly appreciate any help with these issues as I am nearing my thesis submission date.
[GiDlist] problems in meshing
Check that the jacobian determinant of all elements is greater to zero.
Mesh-Mesh Quality...
Select Quality Criteria "Minimum Jacobian" and check the minimum values
(there is a tab for each kind of element)
In case of negative or near zero value do some changes on the geometry
and/or the assigned mesh sizes in order to have better shaped elements.
Maybe the problem is not the mesh quality, but other thinks. Check that all
boundary conditions are well applied. Or maybe the model size is too big to
be solved by your software (e.g. there is not enough memory).
Maybe your software is writing some error message somewhere.
Enrique Escolano
-----Mensaje original-----
De: gidlist-bounces at listas.cimne.upc.edu
[mailto:gidlist-bounces at listas.cimne.upc.edu] En nombre de Dídac
Enviado el: martes, 2 de septiembre de 2014 11:17
Para: gidlist at listas.cimne.upc.edu
Asunto: [GiDlist] problems in meshing
Hi, I'm trying to mesh a structure mainly composed of cylinders, this is
quite complex, i tetahedros by triangles in the process of creating the mesh
I have problems to solve the problem, the software gets stuck and finishes
closing. I would greatly appreciate any help with these issues as I am
nearing my thesis submission date.
_______________________________________________
GiDlist mailing list
GiDlist at listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
Mesh-Mesh Quality...
Select Quality Criteria "Minimum Jacobian" and check the minimum values
(there is a tab for each kind of element)
In case of negative or near zero value do some changes on the geometry
and/or the assigned mesh sizes in order to have better shaped elements.
Maybe the problem is not the mesh quality, but other thinks. Check that all
boundary conditions are well applied. Or maybe the model size is too big to
be solved by your software (e.g. there is not enough memory).
Maybe your software is writing some error message somewhere.
Enrique Escolano
-----Mensaje original-----
De: gidlist-bounces at listas.cimne.upc.edu
[mailto:gidlist-bounces at listas.cimne.upc.edu] En nombre de Dídac
Enviado el: martes, 2 de septiembre de 2014 11:17
Para: gidlist at listas.cimne.upc.edu
Asunto: [GiDlist] problems in meshing
Hi, I'm trying to mesh a structure mainly composed of cylinders, this is
quite complex, i tetahedros by triangles in the process of creating the mesh
I have problems to solve the problem, the software gets stuck and finishes
closing. I would greatly appreciate any help with these issues as I am
nearing my thesis submission date.
_______________________________________________
GiDlist mailing list
GiDlist at listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
[GiDlist] Fwd: problems in meshing
Thanks for the advice. So how would reduce the size of geometry? because after awhile processing that warns me that if there is not enough memory.
Inicio del mensaje reenviado:
De: "Enrique Escolano" escolano en cimne.upc.edu
Asunto: Re: [GiDlist] problems in meshing
Fecha: 2 de setembre de 2014 12.20.13 GMT+2
Para: gidlist en listas.cimne.upc.edu
Responder a: gidlist en listas.cimne.upc.edu
Check that the jacobian determinant of all elements is greater to zero.
Mesh-Mesh Quality...
Select Quality Criteria "Minimum Jacobian" and check the minimum values
(there is a tab for each kind of element)
In case of negative or near zero value do some changes on the geometry
and/or the assigned mesh sizes in order to have better shaped elements.
Maybe the problem is not the mesh quality, but other thinks. Check that all
boundary conditions are well applied. Or maybe the model size is too big to
be solved by your software (e.g. there is not enough memory).
Maybe your software is writing some error message somewhere.
Enrique Escolano
-----Mensaje original-----
De: gidlist-bounces en listas.cimne.upc.edu
[mailto:gidlist-bounces en listas.cimne.upc.edu] En nombre de Dídac
Enviado el: martes, 2 de septiembre de 2014 11:17
Para: gidlist en listas.cimne.upc.edu
Asunto: [GiDlist] problems in meshing
Hi, I'm trying to mesh a structure mainly composed of cylinders, this is
quite complex, i tetahedros by triangles in the process of creating the mesh
I have problems to solve the problem, the software gets stuck and finishes
closing. I would greatly appreciate any help with these issues as I am
nearing my thesis submission date.
_______________________________________________
GiDlist mailing list
GiDlist en listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
_______________________________________________
GiDlist mailing list
GiDlist en listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
------------ próxima parte ------------
Se ha borrado un adjunto en formato HTML...
URL: http://listas.cimne.upc.edu/pipermail/gidlist/attachments/20140904/53f1f572/attachment.htm
Inicio del mensaje reenviado:
De: "Enrique Escolano" escolano en cimne.upc.edu
Asunto: Re: [GiDlist] problems in meshing
Fecha: 2 de setembre de 2014 12.20.13 GMT+2
Para: gidlist en listas.cimne.upc.edu
Responder a: gidlist en listas.cimne.upc.edu
Check that the jacobian determinant of all elements is greater to zero.
Mesh-Mesh Quality...
Select Quality Criteria "Minimum Jacobian" and check the minimum values
(there is a tab for each kind of element)
In case of negative or near zero value do some changes on the geometry
and/or the assigned mesh sizes in order to have better shaped elements.
Maybe the problem is not the mesh quality, but other thinks. Check that all
boundary conditions are well applied. Or maybe the model size is too big to
be solved by your software (e.g. there is not enough memory).
Maybe your software is writing some error message somewhere.
Enrique Escolano
-----Mensaje original-----
De: gidlist-bounces en listas.cimne.upc.edu
[mailto:gidlist-bounces en listas.cimne.upc.edu] En nombre de Dídac
Enviado el: martes, 2 de septiembre de 2014 11:17
Para: gidlist en listas.cimne.upc.edu
Asunto: [GiDlist] problems in meshing
Hi, I'm trying to mesh a structure mainly composed of cylinders, this is
quite complex, i tetahedros by triangles in the process of creating the mesh
I have problems to solve the problem, the software gets stuck and finishes
closing. I would greatly appreciate any help with these issues as I am
nearing my thesis submission date.
_______________________________________________
GiDlist mailing list
GiDlist en listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
_______________________________________________
GiDlist mailing list
GiDlist en listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
------------ próxima parte ------------
Se ha borrado un adjunto en formato HTML...
URL: http://listas.cimne.upc.edu/pipermail/gidlist/attachments/20140904/53f1f572/attachment.htm
[GiDlist] Fwd: Fwd: problems in meshing
Thanks for the advice. So how would reduce the size of geometry? because after awhile processing that warns me that if there is not enough memory. I Had created other meshes with the same geometry but not many surfaces. If I’m not able to solve the problem, can i send you de GiD model?
Best regards
Didac Salsench
Inicio del mensaje reenviado:
De: Dídac didactic88 en hotmail.com
Asunto: [GiDlist] Fwd: problems in meshing
Fecha: 4 de setembre de 2014 17.04.11 GMT+2
Para: gidlist en listas.cimne.upc.edu
Responder a: gidlist en listas.cimne.upc.edu
Thanks for the advice. So how would reduce the size of geometry? because after awhile processing that warns me that if there is not enough memory.
Inicio del mensaje reenviado:
De: "Enrique Escolano" escolano en cimne.upc.edu
Asunto: Re: [GiDlist] problems in meshing
Fecha: 2 de setembre de 2014 12.20.13 GMT+2
Para: gidlist en listas.cimne.upc.edu
Responder a: gidlist en listas.cimne.upc.edu
Check that the jacobian determinant of all elements is greater to zero.
Mesh-Mesh Quality...
Select Quality Criteria "Minimum Jacobian" and check the minimum values
(there is a tab for each kind of element)
In case of negative or near zero value do some changes on the geometry
and/or the assigned mesh sizes in order to have better shaped elements.
Maybe the problem is not the mesh quality, but other thinks. Check that all
boundary conditions are well applied. Or maybe the model size is too big to
be solved by your software (e.g. there is not enough memory).
Maybe your software is writing some error message somewhere.
Enrique Escolano
-----Mensaje original-----
De: gidlist-bounces en listas.cimne.upc.edu
[mailto:gidlist-bounces en listas.cimne.upc.edu] En nombre de Dídac
Enviado el: martes, 2 de septiembre de 2014 11:17
Para: gidlist en listas.cimne.upc.edu
Asunto: [GiDlist] problems in meshing
Hi, I'm trying to mesh a structure mainly composed of cylinders, this is
quite complex, i tetahedros by triangles in the process of creating the mesh
I have problems to solve the problem, the software gets stuck and finishes
closing. I would greatly appreciate any help with these issues as I am
nearing my thesis submission date.
_______________________________________________
GiDlist mailing list
GiDlist en listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
_______________________________________________
GiDlist mailing list
GiDlist en listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
_______________________________________________
GiDlist mailing list
GiDlist en listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
------------ próxima parte ------------
Se ha borrado un adjunto en formato HTML...
URL: http://listas.cimne.upc.edu/pipermail/gidlist/attachments/20140904/9e95e9b0/attachment.htm
Best regards
Didac Salsench
Inicio del mensaje reenviado:
De: Dídac didactic88 en hotmail.com
Asunto: [GiDlist] Fwd: problems in meshing
Fecha: 4 de setembre de 2014 17.04.11 GMT+2
Para: gidlist en listas.cimne.upc.edu
Responder a: gidlist en listas.cimne.upc.edu
Thanks for the advice. So how would reduce the size of geometry? because after awhile processing that warns me that if there is not enough memory.
Inicio del mensaje reenviado:
De: "Enrique Escolano" escolano en cimne.upc.edu
Asunto: Re: [GiDlist] problems in meshing
Fecha: 2 de setembre de 2014 12.20.13 GMT+2
Para: gidlist en listas.cimne.upc.edu
Responder a: gidlist en listas.cimne.upc.edu
Check that the jacobian determinant of all elements is greater to zero.
Mesh-Mesh Quality...
Select Quality Criteria "Minimum Jacobian" and check the minimum values
(there is a tab for each kind of element)
In case of negative or near zero value do some changes on the geometry
and/or the assigned mesh sizes in order to have better shaped elements.
Maybe the problem is not the mesh quality, but other thinks. Check that all
boundary conditions are well applied. Or maybe the model size is too big to
be solved by your software (e.g. there is not enough memory).
Maybe your software is writing some error message somewhere.
Enrique Escolano
-----Mensaje original-----
De: gidlist-bounces en listas.cimne.upc.edu
[mailto:gidlist-bounces en listas.cimne.upc.edu] En nombre de Dídac
Enviado el: martes, 2 de septiembre de 2014 11:17
Para: gidlist en listas.cimne.upc.edu
Asunto: [GiDlist] problems in meshing
Hi, I'm trying to mesh a structure mainly composed of cylinders, this is
quite complex, i tetahedros by triangles in the process of creating the mesh
I have problems to solve the problem, the software gets stuck and finishes
closing. I would greatly appreciate any help with these issues as I am
nearing my thesis submission date.
_______________________________________________
GiDlist mailing list
GiDlist en listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
_______________________________________________
GiDlist mailing list
GiDlist en listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
_______________________________________________
GiDlist mailing list
GiDlist en listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
------------ próxima parte ------------
Se ha borrado un adjunto en formato HTML...
URL: http://listas.cimne.upc.edu/pipermail/gidlist/attachments/20140904/9e95e9b0/attachment.htm
[GiDlist] Fwd: Fwd: problems in meshing
There is not enough memory to generate the mesh in GiD or there is not
enough memory for the calculation program?
In the second case you can use a coarse mesh, independently of the amount of
surfaces that define the geometry.
In any case, without have a look to your model and know the kind of
calculation you want to do I can’t say any more.
You could send me the GiD model zipped directly to escolano at cimne.upc.edu
Enrique Escolano
De: gidlist-bounces at listas.cimne.upc.edu
[mailto:gidlist-bounces at listas.cimne.upc.edu] En nombre de Dídac
Enviado el: jueves, 4 de septiembre de 2014 17:26
Para: gidlist at listas.cimne.upc.edu
Asunto: [GiDlist] Fwd: Fwd: problems in meshing
Thanks for the advice. So how would reduce the size of geometry? because
after awhile processing that warns me that if there is not enough memory. I
Had created other meshes with the same geometry but not many surfaces. If
I’m not able to solve the problem, can i send you de GiD model?
Best regards
Didac Salsench
Inicio del mensaje reenviado:
De: Dídac didactic88 at hotmail.com
Asunto: [GiDlist] Fwd: problems in meshing
Fecha: 4 de setembre de 2014 17.04.11 GMT+2
Para: gidlist at listas.cimne.upc.edu
Responder a: gidlist at listas.cimne.upc.edu
Thanks for the advice. So how would reduce the size of geometry? because
after awhile processing that warns me that if there is not enough memory.
Inicio del mensaje reenviado:
De: "Enrique Escolano" escolano at cimne.upc.edu
Asunto: Re: [GiDlist] problems in meshing
Fecha: 2 de setembre de 2014 12.20.13 GMT+2
Para: gidlist at listas.cimne.upc.edu
Responder a: gidlist at listas.cimne.upc.edu
Check that the jacobian determinant of all elements is greater to zero.
Mesh-Mesh Quality...
Select Quality Criteria "Minimum Jacobian" and check the minimum values
(there is a tab for each kind of element)
In case of negative or near zero value do some changes on the geometry
and/or the assigned mesh sizes in order to have better shaped elements.
Maybe the problem is not the mesh quality, but other thinks. Check that all
boundary conditions are well applied. Or maybe the model size is too big to
be solved by your software (e.g. there is not enough memory).
Maybe your software is writing some error message somewhere.
Enrique Escolano
-----Mensaje original-----
De: gidlist-bounces at listas.cimne.upc.edu
[mailto:gidlist-bounces at listas.cimne.upc.edu] En nombre de Dídac
Enviado el: martes, 2 de septiembre de 2014 11:17
Para: gidlist at listas.cimne.upc.edu
Asunto: [GiDlist] problems in meshing
Hi, I'm trying to mesh a structure mainly composed of cylinders, this is
quite complex, i tetahedros by triangles in the process of creating the mesh
I have problems to solve the problem, the software gets stuck and finishes
closing. I would greatly appreciate any help with these issues as I am
nearing my thesis submission date.
_______________________________________________
GiDlist mailing list
GiDlist at listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
_______________________________________________
GiDlist mailing list
GiDlist at listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
_______________________________________________
GiDlist mailing list
GiDlist at listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://listas.cimne.upc.edu/pipermail/gidlist/attachments/20140904/94097828/attachment-0001.htm
enough memory for the calculation program?
In the second case you can use a coarse mesh, independently of the amount of
surfaces that define the geometry.
In any case, without have a look to your model and know the kind of
calculation you want to do I can’t say any more.
You could send me the GiD model zipped directly to escolano at cimne.upc.edu
Enrique Escolano
De: gidlist-bounces at listas.cimne.upc.edu
[mailto:gidlist-bounces at listas.cimne.upc.edu] En nombre de Dídac
Enviado el: jueves, 4 de septiembre de 2014 17:26
Para: gidlist at listas.cimne.upc.edu
Asunto: [GiDlist] Fwd: Fwd: problems in meshing
Thanks for the advice. So how would reduce the size of geometry? because
after awhile processing that warns me that if there is not enough memory. I
Had created other meshes with the same geometry but not many surfaces. If
I’m not able to solve the problem, can i send you de GiD model?
Best regards
Didac Salsench
Inicio del mensaje reenviado:
De: Dídac didactic88 at hotmail.com
Asunto: [GiDlist] Fwd: problems in meshing
Fecha: 4 de setembre de 2014 17.04.11 GMT+2
Para: gidlist at listas.cimne.upc.edu
Responder a: gidlist at listas.cimne.upc.edu
Thanks for the advice. So how would reduce the size of geometry? because
after awhile processing that warns me that if there is not enough memory.
Inicio del mensaje reenviado:
De: "Enrique Escolano" escolano at cimne.upc.edu
Asunto: Re: [GiDlist] problems in meshing
Fecha: 2 de setembre de 2014 12.20.13 GMT+2
Para: gidlist at listas.cimne.upc.edu
Responder a: gidlist at listas.cimne.upc.edu
Check that the jacobian determinant of all elements is greater to zero.
Mesh-Mesh Quality...
Select Quality Criteria "Minimum Jacobian" and check the minimum values
(there is a tab for each kind of element)
In case of negative or near zero value do some changes on the geometry
and/or the assigned mesh sizes in order to have better shaped elements.
Maybe the problem is not the mesh quality, but other thinks. Check that all
boundary conditions are well applied. Or maybe the model size is too big to
be solved by your software (e.g. there is not enough memory).
Maybe your software is writing some error message somewhere.
Enrique Escolano
-----Mensaje original-----
De: gidlist-bounces at listas.cimne.upc.edu
[mailto:gidlist-bounces at listas.cimne.upc.edu] En nombre de Dídac
Enviado el: martes, 2 de septiembre de 2014 11:17
Para: gidlist at listas.cimne.upc.edu
Asunto: [GiDlist] problems in meshing
Hi, I'm trying to mesh a structure mainly composed of cylinders, this is
quite complex, i tetahedros by triangles in the process of creating the mesh
I have problems to solve the problem, the software gets stuck and finishes
closing. I would greatly appreciate any help with these issues as I am
nearing my thesis submission date.
_______________________________________________
GiDlist mailing list
GiDlist at listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
_______________________________________________
GiDlist mailing list
GiDlist at listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
_______________________________________________
GiDlist mailing list
GiDlist at listas.cimne.upc.edu
http://listas.cimne.upc.edu/cgi-bin/mailman/listinfo/gidlist
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://listas.cimne.upc.edu/pipermail/gidlist/attachments/20140904/94097828/attachment-0001.htm